期刊文献+

提升小波变换在振动信号去噪中的应用 被引量:9

Wavelet transform based on lifting scheme and its application in signal de-noising
下载PDF
导出
摘要 振动信号存在不同形式的波形特征,传统小波去噪中,小波分解的结果与所采用的小波基函数有关,选用不适当的小波基函数会冲淡振动信号的局部特征信息,从而造成原始信号的部分有用信息丢失。为了克服上述缺陷,介绍了提升算法和基于该算法的小波变换快速算法,探讨了如何利用提升小波变换对信号进行去噪。通过对实际信号去噪处理,得出了提升小波算法能够较好地应用于信号去噪的结论。 There are different characteristics of signal in fault vibrating signals of rotating machinery. In the de-noising of traditional wavelet transform, the result of wavelet decomposing is related with wavelet basis function. And the ill-suited wavelet for original signal can weaken the local characteristic of vibrating signal. In order to overcome mentioned limitation, the basis principle of lifting scheme and wavelet transform based on this are introduced in this paper, and present how to de-noise fault vibrating signals using this method. Through the deal with the actual signal de-noising, we can conclude that the lifting wavelet algorithm can better be applied in signal de-noising.
出处 《机械》 2009年第1期8-10,共3页 Machinery
基金 国家自然科学基金资助项目(50677017) 河北省自然科学基金资助项目(E2008001237)
关键词 提升算法 小波变换 信号去噪 预测算子 lifting scheme wavelet transform signal de-nosing predicting operator
  • 相关文献

参考文献3

二级参考文献13

  • 1Sweldens W.The lifting scheme:A construction of second generation wavelets[J].SIAM J.Math.Aanal.,1997,29(2):511-546.
  • 2Claypoole R L,Davis G M,Sweldens W,et al.Nonlinear wavelet transforms for image coding via lifting[J].IEEE Trans.on Image Procesing,2003,12(12):1449-1459.
  • 3段晨东.[D].西安:西安交通大学,2005.
  • 4W.J.Staszewski.Wavelet based compression and feature selection for vibration analysis[J].Journal of sound and vibration,1998,211(5):735-760.
  • 5Daubechies I,Sweldens W.Factoring wavelet transforms into lifting steps[J].J.Fourier Anal.Appl,1998,4(3):247-269.
  • 6ERGUN E. Second generation wavelet transform-based pitch period estimation and voiced/unde-cision for speech signals[J]. Applied Acoustics,2003,64:25-41.
  • 7SWELDENS W. The lifiting scheme:A custom-design construction of biorthogonal wavelets[J]. Appl Comput Harmon Anal, 1996,3:186-200.
  • 8SWELDENS W. The lifiting scheme:A construction of second generation wavelets[J]. SIAMJ Math Anal, 1997, 29:511-546.
  • 9DAUBECHIES I, SWELDENS W. Factoring wavelt transforms into lifting steps[J]. J Fourier Anal Appl,1998,4:247-269.
  • 10LOUNSBERY M, DeROSE T D, WARREN J. Multiresolution surfaces of arbitrary topological tape[J]. ACM Trans on Graphics,1997,16:34-73.

共引文献19

同被引文献62

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部