期刊文献+

基于改进型欧几里德算法的RS译码研究 被引量:1

Research of RS decoding based on modified Euclidean algorithm
下载PDF
导出
摘要 为了简化数字电视译码电路的复杂性,提出一种改进型欧几里德算法。该算法利用多项式带余除法的相关推论,在关键方程中对错误值多项式进行巧妙的处理,这样可以方便地得到商式和余式,从而便于进行迭代。与传统欧几里德算法相比,该算法在求解关键方程的过程中能够更容易地得到错误值多项式和错误位置多项式,能减少硬件电路的复杂性,提高译码速度。 To simplify the complexity of decoding circuit in digital TV, a modified Euclidean algorithm is proposed. With the related deduction of division with reminder of polynomials, the error value polynomial is treated skillfully in key equation. Then the formula of quotient and reminder can be got easily, which is convenient to iteration. Compared with the traditional Euclidean algorithm, the proposed algorithm can easily get error value polynomial and error loca- tor polynomial in the process of solving key equation. In addition, it can simplify the complexity of hardware circuit and improve decoding speed.
作者 张天瑜
出处 《齐齐哈尔大学学报(自然科学版)》 2009年第1期1-5,共5页 Journal of Qiqihar University(Natural Science Edition)
关键词 RS码 多项式带余除法 关键方程 传统欧几里德算法 改进型欧几里德算法 Reed-Solomon code division with reminder of polynomials key equation traditional Euclideanalgorithm modified Euclidean algorithm
  • 相关文献

参考文献11

  • 1Van M G, Moonen M, De M H. Filterbank decompositions for (non)-systematic Reed-Solomon codes with applications to soft deco - ding [J]. IEEE Transactions on Signal Processing, 2007, 55 ( 12 ) : 5681-5694.
  • 2Bleiehenbachcr D, Kiayias A, Yung M. Decoding interleaved Reed-Solomon codes over noisy channels [J]. Theoretical Computer Science, 2007, 379 (3) : 348-360.
  • 3Dai Z D, Yang J H. Multi-continued fraction algorithm and generalized B-M algorithm over Fq [J]. Finite Fields and Their pplieations. 2006, 12 ( 3 ) : 379-402.
  • 4McEliece R J. The theory of information and coding (Second Edition) [M].北京:电子工业出版社.2003.
  • 5Lee K, O'Sullivan M E. List decoding of Reed-Solomon codes from a Grobner basis perspective [J]. Journal of Symbolic Computation, 2008, 43 (9) : 645-658.
  • 6Chang Y W, Jeng J H, Tmong T K. An efficient Euclidean algorithm for Reed-Solomon codes to correct both errors and erasure s [C]. PACRIM 2003. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2003: 895-898.
  • 7Chang Y W, Truong-T K., Jeng J H. VLSI architecture of modied Euclidean algorithm for Reed-Solomon code [J]. Information Sciences, 2003, 155 ( 1-2 ): 139-150.
  • 8Lee S, Lee H, Shin J, et al.,A high-speed pipelined degree-computationless modified Euclidean algorithm architecture for Reed-Solomon decoders [C]. ISCAS 2007. IEEE International Symposium on Circuits and Systems, 2007:: 901-904.
  • 9Lee H, Azam A. Pipelined recursive modified Euclidean algorithm block for low-complexity, high-speed Reed-Solomon decoder [J]. Electronics Letters, 2003, 39 ( 19 ): 1371-1372.
  • 10Fournaris A P, Koufopavlou O. Applying systolic multiplication-inversion architectures based on modified extended Euclidean algorithm for GF(2^k) in elliptic curve cryptography [J]. Computers & Electrical Engineering, 2007, 33 ( 5-6 ) : 333-348.

二级参考文献16

  • 1Gilbert E N, Pollak H O. Steiner minimal trees. SIAM J Appl. Math., 1968, 16(2): 1-29.
  • 2Melzak Z A. On the problem of Steiner. Canadian Mathematical Bulletin, 1961, 4(2): 143-148.
  • 3Du D Z, Hwang F K. The Steiner ratio conjecture of Gilbert-Pollak is true. Algorithmica, 1992, 7(1): 121-135.
  • 4Nelson Maculan, Philippe Michelon, Adilson E Xavier. The euclidean steiner problem in R^n: a mathematical programming formulation. Annals of Operations Research, 2000, 11: 209-220.
  • 5Kirkpatric S, et al. Optimization by simulated annealing. Science, 1983, 220(4598): 671-679.
  • 6Koulamas C, et al. A survey of simulated annealing applications to operations research problems. Omega, 1994, 22(1): 41-56.
  • 7Dreyer D, Overton M. Two heuristics for the Euclidean Steiner tree problem. Journal of Global Optimization, 1998, 13(1): 95-106.
  • 8Kahng A B, Robins G. A new class of iterative Steiner tree heuristics with good performance. IEEE Trans. on Computer Aided Design, 1992, 11(7): 893-902.
  • 9Stefan Vob. Steiner's problem in graphs: heuristic methods. Discrete Applied Mathematics, 1992, 40(1): 43-72.
  • 10Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees. Acta Informatica, 1981, 15(1): 141-145.

同被引文献8

  • 1张怡,韩维.高速RS编码算法及FPGA实现[J].无线通信技术,2005,14(1):23-26. 被引量:14
  • 2王新梅,肖国镇.纠错码-原理与方法[M].西安:西安电子科技大学出版社,2006.
  • 3LEE M H, CHOI S B, CHANG J S. A high speed Reed- Solomon decoder [ J ]. IEEE Transactions on Consumer Electronics, 1995,41 ( 4 ) : 1142 - 1148.
  • 4HSU H Y, YEO J C, WU A Y. Multi-symbol sliced dynamically reconfigurable Reed-Solomon decoder design based on unified finite field processing element [ J ]. IEEE Transactions on Very Large Scale Integration Systems,2006,14 (5) :489-499.
  • 5McELIECE R. The theory of information and coding[ M ]. 2rid ed UK:Cambridge University Press,2002.
  • 6HSU H Y, WANG S F, WU A Y. A novel low-cost multimode Reed-Solomon decoder design based on Peterson- Gorenstein-Zierler algorithm [ J]. Journal of VLSI Signal Processing, 2003,34 : 251-259.
  • 7CHAARI L, FOURATI M, MASMOUD N, et al. A reeonfigurable FEC system based on Reed-Solomon eodec for DVB and 802. 16 network [J]. WSEAS transaction on circuits and systems,2009,8 (8) :729-744.
  • 8SONG Leilei,YU Meilin,SHAFFER M S. 10 and 40 Gb/s forward error correction devices for optical communications [J]. IEEE Journal of Solid-State Circuits,2002,37 ( 11 ) : 1565-1572.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部