期刊文献+

基于最小描述长度和遗传算法的属性选择方法 被引量:1

Attribute Selection Method based on Minimum Description Length and Genetic Algorithm
下载PDF
导出
摘要 为了提高使用属性选择方法后分类器的分类效果,减少分类器的分类错误率,提出了一种基于最小描述长度和遗传算法结合的属性选择方法GA+MDL算法。通过与weka平台上已经实现的两种属性选择方法GeneticSearch+CfsSubsetEval方法以及BestFirst+CfsSubsetEval方法进行比较,证明该方法能够从一定程度上提高属性选择算法的效果。 A new attribute selection method based on genetic algorithm and minimum description length has been proposed in order to increase the classification effect of categorizer after using attribute selection method. After comparing the two available methods on Weka platform: GeneticSearch + CfsSubsetEval and BestFirst + CfsSubsetEval, it' s shown that the method can increase the attribute selection method in some degree.
作者 郭维维 韩萌
出处 《大连民族学院学报》 CAS 2009年第1期85-87,共3页 Journal of Dalian Nationalities University
基金 国家自然科学基金资助项目(60673089)
关键词 属性选择 最小描述长度 遗传算法 attribute selection minimum description length genetic algorithm
  • 相关文献

参考文献6

  • 1WITTEN I H, FRANK E. Data mining - Practical ma-chine learning tools and techniques (2nl) [ M].北京:机械工业出版社,2006.
  • 2HANJ,KAMBERM.数据挖掘:概念与技术[M].范明,孟小峰,泽.北京:机械工业出版社,2004.
  • 3EIBEN A, SMITH J. Introduction to evolutionary comouting [M]. Berlin :Springer,2003.
  • 4DASH M, LIU H. Feature selection for classification [ J ]. Intelligent Data Analysis, 1997 ( 1 ) : 131 - 156.
  • 5YANG J,HONAVAR V. Feature subset selection using a genetic algorithm [J]. Intelligent Systems and Their Application, IEEE, 1998,380 - 385.
  • 6SHEINVALD J, DOM B, NIBLACK W. A modeling approach to feature selection [ C ]//In proceedings of 10th international conference on Pattern Recognition, 1990: 535 - 539.

同被引文献7

  • 1JAIN A, MURTY M, FLYNN P. Data clustering: A Review[ J]. ACM Computing Survey, 1999,31 ( 3 ) : 264 - 323.
  • 2KARYPIS G, HAN E - H, KUMAR V. Chameleon : A hierarchical clustering algorithm using dynamic modeling [J]. IEEE Computer, 1999,32 (8) :68 - 75.
  • 3ZHANG Shihua, WANG Ruisheng, ZHANG Xiangsun. Indentification of overlapping community structure in complex networks using fuzzy c - means clustering [ J ]. Physlea A, 2007 (374) :483 -490.
  • 4HIGHAM D J, KALNAA G, MILLA K. Spectral clustering and its use in bioinformaties[J]. Journal of Computational and Applied mathematics,2007,20(4) :25 -27.
  • 5KANUNGO T, MOUNT D M, NETANYAHU N, et al. An efficient k - means clustering algorithm. Analysis and implementation[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence,2002 (24) :881 - 892.
  • 6KANUNGO T, MOUNT D M, NETANYAHU N, et al. A local search approximation algorithm for k - means clustering[ J]. Computational Geometry:Theory and Applications, 2004(28) :89 - 112.
  • 7杨久俊,邓辉文,滕姿.基于混合粒子群优化算法的聚类分析[J].计算机工程与设计,2008,29(22):5820-5823. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部