期刊文献+

移动计算环境中易变数据的在线广播调度 被引量:1

On-line Scheduling for Constantly-evolving Data Broadcasting in Mobile Computing Systems
下载PDF
导出
摘要 随着无线传感器网络、GPS等技术的广泛应用,产生了易变数据这种区别于传统静态数据的新型数据类型,对数据处理方法提出了新的要求。在移动计算环境中,数据广播是一种有效的数据访问方式。针对易变数据的特点提出数据平均不确定率的概念并在此基础上提出一种易变数据在线广播调度策略CEDB-M。仿真实验表明该策略在无传输差错发生、有传输差错发生和多信道广播条件下在获得较优的访问延迟的同时有效降低通过广播读取易变数据的不确定性,有利于基于这些数据的查询结果质量的提高。 With the increasing popularity of wireless sensor network and GPS, constantly evolving data as a new type of data bring new challenge for the data processing methods. Data broadcasting is an effective method for data dissemination in mobile computing systems. Definition of the mean uncertainty ratio of data was presented. Furthermore, a broadcasting scheme CEDB-M was proposed for constantly evolving data dissemination. Simulation results testify that CEDBM can reduce the uncertainty of the broadcasted constantly evolving data effectively at the cost of minor increase in data access time, in the case of no transmission error, presence of transmission errors, and multiple broadcast channels, thus benefit the qualities of the query results based on the data.
出处 《计算机科学》 CSCD 北大核心 2009年第1期34-38,共5页 Computer Science
基金 国家高技术研究发展计划(863计划)项目(No.2007AA01Z309) 国家自然科学基金项目(No.60203017)资助
关键词 移动计算环境 易变数据 广播 调度 Mobile computing systems,Constantly-evolving data,Broadcasting,Scheduling
  • 相关文献

参考文献14

  • 1Wolf son O, Sistla P,Chamberlain S, et al. Updating and querying databases that track mobile units. Distributed and Parallel Databases,1999,7(3)
  • 2Cheng Chun - kong. Managing Uncertainty in Constantly - evolving Environments. PhD dissertation. 2005
  • 3Cheng R, Kalashnikov D, Prabhakar S. Evaluating probabilistie queries over imprecise data ff Proc. of the ACM SIGMOD Intl.Conf. on Management of Data. June 2003
  • 4Cheng R, Xia Y, Prabhakar S, et al. Efficient indexing methods for probabilistie threshold queries over uncertain data//Proc, of the 30th Intl. Conf. on Very Large Data Bases. 2004
  • 5Cheng R, Xia Y, Prabhakar S, et al. Efficient join processing over uncertain valued attributes//CIKM'06. November 2006
  • 6Chau M , Cheng R , Kao B. Uncertain Data Mining : A New Research Direction//Invited Paper, the Workshop on the Sciences of The Artificial (WSA) 2005. National Dong Hwa University, Taiwan,Dec. 2005
  • 7Chau M,Cheng Reynold,Kao B, et al. Uncertain Data Mining: An Example in Clustering Location Data//the Methodologies for Knowledge Discovery and Data Mining, Pacific-Asia Conference(PAKDD 2006). Singapore, April 2006
  • 8Wang Kay Ngai, Ben Kao, Chun Kit Chui, et al. Efficient Clustering of Uncertain Data//the Proe. of the Sixth International Conference on Data Mining (ICDM'06). 2006
  • 9Sau Dan Lee, Ben Kao, Reynold Cheng. Reducing UK means to K-means//the Proc. of the 1st Workshop on Data Mining of Uncertain Data (DUNE2007). 2007
  • 10Acharya S, Alonso R, Franklin M, et al. Broadcast disks:Data management for asymmetric communications environments// Proc. of the ACM SIGMOD Intl. Conf. on Management of Data. May 1995

同被引文献9

  • 1Cheng R.Managing Uncertainty in Constantly-evolving Environments[D].Purdue University,2005
  • 2Cheng R,Kalashnikov D V,Prabhal.ar S.Evaluating probabilistic queries over imprecise data[C]//The 2003 ACM SIGMOD International Conference on Management of Data.San Diego,2003
  • 3Cheng R,Xia Y,Prabhal.ar S,et al.Efficient indexing methods for probabilistic threshold queries over uncertain data[C]//The 30th International Conference on Very Large Data Bases.Toronto,2004
  • 4Dalvi N,Suciu D.Efficient query evaluation on probabilistic databases[C]//The 30th International Conference on Very Large Data Bases.Toronto,2004
  • 5Chau M,Cheng R,Kao B,et al.Uncertain Data Mining:An Example in Clustering Location Data[C] // The 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining.Singapore,2006
  • 6Kriegel H-P,Pfeifle M.Density-based clustering of uncertain data[C]//The 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.Chicago,2005
  • 7Ester M,Kriegel H-P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//The 2nd International Conference on Knowledge Discovery and Data Mining.Portland,1996
  • 8Stonebral.er M,Frew J,Gardels K,et al.The SEQUOIA 2000 Storage Benchmark[C]//The 1993 ACM SIGMOD International Conference on Management of Data.Washington,1993
  • 9Yeung K,Ruzzo W.An Empirical Study on Principal Component Analysis for Clustering Gene Expression Data[J].Bioinformatics,2001,17(9):763-774

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部