期刊文献+

一种时间序列相似搜索中提前终止效率的估算方法 被引量:2

Estimate on the Effects of Early Abandon Technique in Time Series Similarity Search
下载PDF
导出
摘要 提前终止(Early Abandon)是在受限的相似搜索中的一项技术,在提高时间序列相似搜索的效率,减少冗余计算中取得成功应用。但是以往的工作中提前终止的效率往往都只是通过大量的实验测试来体现,而缺少一种理论化的方法。从理论上提出了一种对提前终止技术的实际效率的估算方法,采用统计概率的方式分析了提前终止技术在时间序列相似搜索中的效率,同时对理论结果进行了实验验证。实验结果表明,理论上的估计方法在一定程度上可以估算出提前终止的效率,为时间序列相似搜索的实际效率计算提供了理论工具。 Early abandon is one of the techniques in the constrained similarity search,and has found great success in accelerating time series similarity search, as well as reducing the redundant computations. However, previous works on early abandon were focused on the empirical experimental demonstrations on the effects of the technique, while no theo- retical analysis is available. A theoretical estimate method on the effects of early abandon was proposed, which adopts the statistical analysis in the process. Substantial experiments were performed to evaluate the results of the estimate. The experimental results show that the estimate can get the value of the effects in most cases, and can be applied in the real efficiency calculation of time series similarity search.
出处 《计算机科学》 CSCD 北大核心 2009年第1期114-117,共4页 Computer Science
基金 国家发展与改革委员会"安全智能数据整合平台开发及产业化"项目(项目编号[2005]538号)资助
关键词 时间序列 相似搜索 提前终止 概率 Time series,Similarity search,Early abandon,Probability
  • 相关文献

参考文献6

  • 1Keogh E , Kasetty S. On the need for time series data mining benchmarks:a survey and empirical demonstration [C]//Proc. of SIGKDD. Edmonton, Alberta, Canada, 2002 : 102-111
  • 2Keogh E, Li Wei, Xi Xiaopeng, et al. LB_Keogh Supports Exact Indexing of Shapes Under Rotation Invariance with Arbitrary Representations and Distance Measures[C]//Proc. of 32nd Very Large Databases Conf. (VLDB). Seoul,Korea, 2006
  • 3Keogh E. Exact Indexing of dynamic time warping//Proc, of 28th International Conference on Very Large Data Bases (VLDB). Hong Kong, China, 2002 : 406-417
  • 4Li J unkui, Wang Yuanzhen. EA_DTW.. Early Abandon to Accelerate Exactly Warping Matching of Time Series[C]//Proc. of Int'l Conf. on Intelligent Systems and Knowledge Engineering (ISKE). 2007
  • 5Li Wei, Keogh E, Van H H, et al. Atomic Wedgie: Efficient Query Filtering for Streaming Time Series[C]//Proc. of 5th IEEE Int'l Conf. on Data Mining (ICDM). Houston, Texax, 2005:490-497
  • 6盛骤,谢式千,潘承毅.概率论与数理统计.第2版.北京:高等教育出版社,1997

同被引文献17

  • 1李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报,2005,28(9):1467-1475. 被引量:20
  • 2鲁晓波.信息设计中的交互设计方法[J].科技导报,2007,25(13):18-21. 被引量:51
  • 3Berndt D J,Clifford J. Using dynamic time warping to find patterns in time series[C]//Proc of the KDD Workshop. Seattle, WA, 1994 : 359-370.
  • 4Vlachos M, Hadjieleftheriou M, Gunopulos D, et al. Indexing multi-dimensional time-series with support for multiple distance measures[C]///Proe of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Washington, 2003:216- 255.
  • 5Keogh E J. Exact indexing of dynamic time warping[C]//Proceedings of 28th International Conference on Very Large Data Bases. Hong Kong,China,2002:406-417.
  • 6Kim M-S, Kim S-W, Shin M. Optimization of Subsequence Matching Under Time Warping in Time-series Databases [C]// ACM Symposium on Applied Computing. New Mexico, USA, 2005:581-586.
  • 7Li Jun-kui,Wang Yuan-zhen. EA_DTW: Early Abandon to Accelerate Exactly Warping Matching of Time Series[C]//Proc of Int'l Conf. on Intelligent Systems and Knowledge Engineering. 2007.
  • 8http://kdd. its. nd. edu/databases/High-quality Australian Sign Language/High-quality Australian Sign Language. html.
  • 9http://kdd. its. uci. edu/databases/robotfailure/robotfailure. html.
  • 10穆斌,闫金来.高效的时间序列下界技术[J].计算机工程与应用,2009,45(11):168-171. 被引量:4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部