期刊文献+

对简单向量距离文本分类算法的改进 被引量:4

Improvement of the Vector Space Model Text Classifier
下载PDF
导出
摘要 分析了简单向量距离文本分类算法的不足,提出了相应的改进算法。把反馈思想引入简单向量距离分类模型,使文本分类系统具备了不断学习的能力。实验证明,改进后的文本分类模型适合于文本分类的需要,改善了原有分类器的性能。 The paper analyzed the shortcomings of vector space method and put forwards a better method to improve it. It introduced feedback learning into vector space method text classifier, let text categorization system have capability of self-learning. Experiment shows that the revised text categorization model is used to the need of text categorization, and improves the performance of former one.
出处 《计算机科学》 CSCD 北大核心 2009年第1期236-238,共3页 Computer Science
关键词 文本分类 简单向量距离 反馈 分类模型 Text categorization, Vector space method,Feedback,Categorization model
  • 相关文献

参考文献5

  • 1Rocchio J J. Relevance feedback in information retrieval[A]. The SMART Retrieval System Experiments in Automatic Document Processing [C]. Ne Jersey: Prentice Hall, Inc. , 1971 : 313-23
  • 2Ide E. Relevance feedback in an automatic document retrieval systems [R]. Ithaca, NY: Cornell University, 1969
  • 3Salton G. The SMART Retrieval System[M]. Englewood Cliffs N J : Prentice Hall, Inc. , 1971
  • 4CoxlJ, MillerML, OmohundroSM. Pichunter : Bayesian relevance feedback for image retrival system[A]//Int'l Conf. on Pattern Recognition [C]. Vienna, Austeia, 1996:361-369
  • 5Ho L J. Combining the evidence of differrent relevancefeedback methods for information retrieval[J]. Information Processing & Management, 1998,34(6) :681-691

同被引文献40

  • 1Salton G,Wong A,Yang C S. A Vector Space Model for Automatic Indexing[J]. Communications of ACM,1975,18(11) :613 -620.
  • 2David D Lewis, Feature Selection and Feature Extraction for Text Categorization [C]// Proceedings of Speech and Natural Language Workshop. Morgan Kaufmann: Defense Advanced Research Projects Agency, 1992 : 212- 217.
  • 3Yang Yiming. An Evaluation of Statistical Approaches to Text Categorization[J]. Information Retrieval, 1999,1 (2) :69-90.
  • 4Jasper’s Java Jacal.关于复旦大学自然语言处理实验室基准资料[EB/OL].(2008-06-21).http://wwe.sogou.com/labs/dl/c.html.
  • 5Jasper’s Java Jaca.文本分类技术[EB/OL].[2012-11-02].http://www.nlp.org.cn/docs/doclist.php?catjd-16type=15.
  • 6Zelikovitz S, Marquez F. Transductive Learning for Short Text Classification Problems Using Latent Semantic Indexing[J]. International Journal of Pattern Recognition and Artificial Intelligence,2005,19(2):143-163.
  • 7Fabrizio Sebastiani. Machine Learning in Automated Text Categorization[J]. ACM Computing Surveys, 2002,19 (5) :1- 34.
  • 8宗成庆.统计自然语言处理[M].北京:清华大学出版社,2013.
  • 9刘秀松.基于改进的SVM文本分类建模[J].情报理论与实践,2007,30(6):841-843. 被引量:7
  • 10Blei. Probabilistic topic models [J]. Communicationsof the ACM, 2012, 55(4): 77-84.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部