期刊文献+

一种基于贝叶斯网络的模型诊断方法 被引量:5

Method of Model-based Diagnosis Founded on Bayesian Network
下载PDF
导出
摘要 提出一种结合贝叶斯网络进行基于模型诊断的方法。在基于模型诊断的基础上,建立了元件状态模型,并将诊断模型转换为贝叶斯网络,利用团树算法求解征兆产生时系统状态的后验概率,再通过计算边缘分布获得元件故障概率。最后给出一个数字故障电路的实例,在Matlab上进行推理,得到了精确的概率值,验证了该方法的有效性。 Put forward a method which applies bayesian network to the model-based diagnosis. Building a componentstate model which is founded on the model-based diagnosis, authors got the posterior probability of system state in case the appearance of certain symptoms through junction tree algorithm. The component fault probabilities were obtained by the calculation of marginal distribution. An example of fault digital circuit was given. Making use of Matlab, the accurate probabilities were got. Therefore, the method was proved out.
作者 赵进晓 肖飞
出处 《计算机科学》 CSCD 北大核心 2009年第1期291-292,F0003,共3页 Computer Science
关键词 贝叶斯网络 模型诊断 元件故障 概率值 Bayesian network,Model-based diagnosis
  • 相关文献

参考文献5

  • 1Pearl J . Probabilistic Reasoning in Intelligent Systems : Net works of Plausible Inference. 2nd ed. San Mateo, CA: Morgan Kaufmann, 1991
  • 2Kohlas J, Anrig R, Haenni R. Model-based diagnosis and probabilistie assumption based reasoning[J]. Artificial Intelligence, 1998,104(1) : 71-106
  • 3邓勇,施文康,陈良州.基于模型诊断的贝叶斯解释及应用[J].上海交通大学学报,2003,37(1):5-8. 被引量:9
  • 4http://www.cs. ubc. ca/-murphyk/Software/BNT/bnt, html
  • 5Retiter R. A theory of diagnosis from first principles[J]. Artificial Intelligence, 1987,32 (1) : 57-95

二级参考文献5

  • 1de Kleer J. Diagnosing multiple faults[J]. Artificial Intelligence, 1987,32 ( 1 ): 97 - 130.
  • 2Davis R. Reasoning from first principle in electronic troubleshooting[J]. Journal of Man-Machine Study,1983,9 (2): 403- 423.
  • 3Retiter R. A theory of diagnosis from first principles[J]. Artificial Intelligence, 1987,32 ( 1 ): 57 - 95.
  • 4Kohlas J, Anrig B, Haenni R, et al. Model-based diagnosis and probabilistic assumption-based reasoning[J]. Artificial Intelligence, 1998,104 ( 1 ) : 71 - 106.
  • 5陆汝衿.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001.

共引文献8

同被引文献47

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 3张向阳,刘鸣.贝叶斯推理研究综述[J].心理科学进展,2002,10(4):388-394. 被引量:13
  • 4LEONARD T,HSU J S J.Bayesian methods:An analysis for statisticians and interdisciplinary researchers[M].China Machine Press,2006,3:98-163.
  • 5KRISTIAN G L,AADERS L.Madsen maximal prime sub-graph decomposition of Bayesian networks[J].IEEE Transactions,man and cybernetics,part B:cybernetics,2002,32(1):21-31.
  • 6李海军,马登武,刘霄,等.贝叶斯网络理论在装备故障检测中的应用[M].北京:国防工业出版社,2009:8-9.
  • 7GHOMMAM J,MNIF F.Asymptotic backstepping stabilization of an underactuated surface vessel[J].IEEE Transactions on Control Systems Technology,2006,14(6):1150-1157.
  • 8费胜巍,孙宇,师会超.基于故障分析模型的贝叶斯网络构建及应用[J].计算机集成制造系统,2007,13(9):1768-1773. 被引量:9
  • 9张维娜 苏中.基于虚拟仪器的某火箭弹测试系统.仪器仪表学报,2006,27(12):223-227.
  • 10陈树学,刘萱.LabVIEW宝典.电子工业出版社2011.3.

引证文献5

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部