期刊文献+

基于均匀线阵的混合源波达方向估计方法 被引量:4

DOA Estimation for Mixed Signal Situation with Uniform Linear Array
原文传递
导出
摘要 文中提出了一种基于均匀线阵的混合源波达方向DOA估计的改进方法。该方法首先利用传统MUSIC方法估计出非相干信号源的DOA,然后接收数据协方差矩阵进行差分消除不相关源和噪声的影响,对其进行特殊的空间平滑去相干,从而利用重建的数据协方差矩阵估计相干源的DOA。此方法的特点是分别估计不相关信号和相干信号的DOA。优点是算法在估计出多于阵元数信号的前提下具有较高的DOA估计精度和稳健性。仿真结果表明此方法的估计性能优于空间差分平滑算法。 An improved direction of arrival (DOA) estimation method is proposed with uniform linear array (ULA) when mixed sources are presented. The DOAs of uncorrelated signals are first estimated by using conventional multiple signal classification (MUSIC). Then the spatial difference matrix is constructed and the contributions of uncorrelated signals are eliminated. Then the coherent signals can be resolved by performing the improved spatial smoothing technique to the spatial difference matrix. The number of sources resolved by the proposed method can exceed the number of array elements. Simulation results indicate that the proposed method is effective, robust and outperforms the existing spatial difference smoothing methods.
出处 《通信技术》 2009年第1期123-125,共3页 Communications Technology
关键词 均匀线阵 相干源 波达方向 空间平滑技术 负反对称矩阵 uniform linear array (ULA) coherent sources direction-of-arrival (DOA) spatial smoothing technique negative-cross-symmetric matrix
  • 相关文献

参考文献10

  • 1Schmidt R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. Antennas Propagat., 1986, 34(3): 276-280.
  • 2Roy R, Kailath T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans. ASSP, 1989, 37(7):984- 995.
  • 3Pillai S U, Kwon B H. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification [J]. IEEE Trans ASSP, 1989, ASSP-37(1): 8-15.
  • 4王布宏,王永良,陈辉.相干信源波达方向估计的加权空间平滑算法[J].通信学报,2003,24(4):31-40. 被引量:35
  • 5王布宏,王永良,陈辉.一种新的相干信源DOA估计算法:加权空间平滑协方差矩阵的Toeplitz矩阵拟合[J].电子学报,2003,31(9):1394-1397. 被引量:18
  • 6Du W, Kirlin R L. improved spatial smoothing techniques for DOA estimation of coherent signals[J]. IEEE Antennas Trans. On SP , 1991 ,39 (5):1208-1210.
  • 7Rajagopal R, Rao P R. Generalized Algorithm for DOA Estimation in a Passive Sonar[J]. Proc. Inst. Elect. Eng. F, 1993, 140(1):12-20.
  • 8叶中付.空间平滑差分方法[J].通信学报,1997,18(9):1-7. 被引量:17
  • 9Qi C Y, Wang Y L, Zhang Y S, et al. Spatial Difference Smoothing for DOA Estimation of Coherent Signals [J]. IEEE Signal Processing Letter, 2005, 12(11): 800-802
  • 10Xu X, Ye Z, Zhang Y, et al. A Deflation Approach to Direction of Arrival Estimation for Symmetric Uniform Linear Array[J] IEEE Antennas and Wireless Propagat. Lett., 2006,5(1) 486-489.

二级参考文献26

  • 1EVANS J E, JOHSON J R, SUN D F. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation[A]. IEEE 1st ASSP workshop spectral estimation Canada[C]. 1981. 134-139.
  • 2EVANS J E, JOHSON J R, SUN D F. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ACT Navigation and Surveillance System[R]. M I T Lincoln Lab, Lexington, MA, Tech Rep, 582, June 1982.
  • 3SHAN T J, WAX M, KAILATH T. On spatial smoothing for direction -of -arrival estimation of coherent signals[J]. IEEE Trans on ASSP, 1985, 33(4):806-811.
  • 4PILLAI S U, KWON B H. Forward-backward spatial smoothing techniques for the coherent signal identification[J]. IEEE Trans on ASSP, 1989, 37(1): 8-15.
  • 5WILLIAMS R T, PRASAD S, MAHALANABIS A K. An improved spatial smoothing technique for beating estimation in a multipath environment[J]. IEEE Trans on ASSP, 1988, 36(4): 425-432.
  • 6JIAN L I. Improved angular resolution for spatial smoothing techniques[Y]. IEEE Trans on SP, 1992, 40(12):3078-3081.
  • 7WEIXIU D, KIRLIN R. Improved spatial smoothing techniques for DOA estimation of coherent signals[Y]. IEEE Trans on SP, 1991,39 (5):1208-1210.
  • 8GRENIER D, BOSSE E. Decorrelation performance of DEESE and spatial smoothing techniques for direction-of-arrival problems[J].IEEE Trans on SP, 1996, 44 (6):1579-1584.
  • 9WAX M, KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Trans on ASSP, 1985, 33 (2):387-392.
  • 10WAX M, ZISKIND I. Determining the number of coherent signals by MDL principle[J]. IEEE Tram on ASSP, 1989, 37(8):1190-1196.

共引文献61

同被引文献30

  • 1刘小河,王建英,杨美英.基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计[J].数据采集与处理,2008,23(5):547-550. 被引量:7
  • 2陶然,周云松.基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法[J].北京理工大学学报,2005,25(10):895-899. 被引量:31
  • 3Van Trees H L. Optimum array processing, Detection, Estimation, and Modulation Theory, vol. Ⅳ[M]. USA: Wiley, 2002.
  • 4Gorodnitsky I F, Rao B D. Sparse Signal Reconstruction from Limited Data Using Focuss: A E-Weighted Minimum Norm Algorithm[J]. IEEE Transactions on Signal Processing, 1997,45(03):600-616.
  • 5Malioutov D, Cetin M, Willsky A S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays[J]. IEEE Transactions on Signal Processing, 2005,53(08):3010-3022.
  • 6Cevher V, Gurbuz A C, McClellan J H, et al. Compressive Wireless Arrays for Bearing Estimation[C]. Las Vegas:[s.n.], 2008:2497-2500.
  • 7Baraniuk R G. Compressive Sensing[J]. IEEE Signal Processing Magazine, 2007, 24(04):118-121.
  • 8Friedlander B,Weiss A J.Direction Finding in the Presence of Mutual Coupling[J].IEEE Trans.on Antennas and Propagation,1991,39(03):273-284.
  • 9Hung E K L.A Critical Study of A Self-calibrating Direction-36 Finding Method for Arrays[J].IEEE Trans.on Signal Processing,1994,42 (02):470-474.
  • 10Pierre J,Kaveh M.Experimental Performance of Calibration and Direction Finding Slgorithms[C]//Proceedings of IEEE ICASSP-91.Toronto:IEEE,1991:1365-1368.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部