期刊文献+

流量矩阵估计方法研究 被引量:1

Research on Traffic Matrix Estimation
原文传递
导出
摘要 流量矩阵在流量工程中占据很重要的位置,精确的流量矩阵至关重要。然而直接测量流量矩阵将消耗大量网络资源,一般是不允许的。因此估计方法和统计技术得到重视,即根据对有限链路的测量数据和路由信息等先验信息,通过合理建模来推断流量矩阵。文中对现有的流量矩阵估计中几个最重要估计方法进行了分析和总结,指出它们的优点和缺陷,最后提出进一步估计流量矩阵所需要考虑的因素。 The traffic matrix information plays an important role in traffic engineering. As everybody knows, accurate traffic matrices are crucial, but the direct measurement of the traffic matrix is usually not allowed for its consuming lots of network resources. As a result, estimation methods and statistical techniques are emphasized by many researchers, that is, the inference of traffic matrix is realized by reasonably modeling, and incorporating the measurement data of limited links, as well as other prior information. In this paper, the current techniques for estimating traffic matrix are analyzed, and their the advantages and disadvantages summarized. Finally, various factors is proposed, which should be considered carefully in improving the accuracy of traffic matrix estimation.
作者 胡晗
出处 《通信技术》 2009年第1期208-210,213,共4页 Communications Technology
关键词 流量测量 源-目的对 流量矩阵估计 traffic measurement origin-destination traffic matrix estimation
  • 相关文献

参考文献15

  • 1Feldmann A, Greenberg A, Lund C, et al. Deriving Traffic Demand for Operational IP Networks: Methodology and Experience[J]. IEEE/ACM Transactions on Networking, Jun 2001, 9(03): 265-279.
  • 2Duffield N G,6Grossglauser M. Trajectory Sampling for Direct Traffic Observation[J]. IEEE/ACM Transactions on Networking, June 2001, 9 (3): 280-292.
  • 3Varghese G, Estan C, Savage S. Automatically Inferring Patterns of Resource Consumption in Network Traffic[C]. In:Proe. of the ACM SIGCOMM 2003, on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM Press. 2003: 137-148.
  • 4Coates M, Hero A, Nowak R, et al. Large Scale Inference and Tomography for Network Monitoring and Diagnosis[EB/OL]. http://www.stat. berkeley, edu/techreports/604, ps.Z. 2001.
  • 5Zhang Y, Roughan M, Duffield N, et al. Fast accurate computation of large-scale IP traffic matrices from link loads[J]. ACM SIGMETRICS Performance Evaluation Review, 2003, 31 (1) :206-217.
  • 6Medina A, Taft N, Salamatian K, et al. Traffic matrix estimation: existing techniques and new directions[A]. In:Paxson V, Balakrishnan H, eds. Proc. of the ACM S IGCOMM 2002 on Applications, Technologies, Architectures, and Protocols for Computer Communications, Pittsburgh: ACM Press. 2002:161-174.
  • 7Vaton S, Gravey A. Network Tomography: An iterative Bayesian analysis[A]. In: Charzinski J, Lehnert R, Tran -Gia P, eds. Proc. Of the 18th Int' 1 Teletraffic Congress (ITC), Berlin:[s.n.], 2003: 261-270.
  • 8Goldschmidt O. ISP backbone traffic inference methods to support traffic engineering[EB/OL], http://www.caida.org/ workshops/isma/0012/talks/olivier/, 2000.
  • 9Vardi Y. Network Tomography: Estimating source-destination traffic intensities from link data[J]. Journal of the American Statistical Association, 1996, 91(433):365-377.
  • 10Tebaldi C, West M. Bayesian inference on network traffic using link count data[J]. Journal of the American Statistical Association, 1998,93(442):557-576.

同被引文献11

  • 1TAN L, WANG X. A novel method to estimate IP traffic matrix [ J]. IEEE Communication Letters, 2007, 11(11) : 907 - 909.
  • 2ZHANG Y, ROUGHAN M, LUND C, et al. An information theo- retic approach to traffic matrix estimation [ C]// Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. New York: ACM Press, 2003:25 - 29.
  • 3CAO J, DAVIS D, vander WEIL S, et al. Time-varying network tomography: router link data [ J]. Journal of the American Statistical Association, 2000, 95(452) : 1063 - 1075.
  • 4TEBALDI C, WEST M. Bayesian inference on network traffic using link count data [ J]. Journal of the American Statistical Association, 1998, 93(442): 557-576.
  • 5JIANG D D, HUG M. Large-scale IP traffic matrix estimation based on the recurrent multilayer perceptron network [ C]//ICC'08:2008 IEEE International Conference on Communication. Washington, DC: IEEE Computer Society, 2008:229-232.
  • 6YI J, SHANG F J, ZOU Y, et al. A GA approach for traffic matrix estimation [ C]//IC-BNMT'09: Proceedings of the 2nd 1EEE Inter- national Conference on Broadband Network & Multimedia Technolo- gy. Washington, DC: IEEE Computer Society, 2009:252-256.
  • 7DORIGO M, BIRATYARI M, STUTZLE T. Ant colony oPtimization [ J]. IEEE Computational Intelligence Magazine, 2006, 1 (4) : 28 -39.
  • 8LI Z, CHEN X H, WANG H. Modified ACO for general continuous function optimization [ C]// ISDEA 2012: Proceedings of the Sec- ond International Conference on Intelligent System Design and Engi- neering Application. Washington, DC: IEEE Computer Society, 2012:348-354.
  • 9XUE X, SUN W, PENG C S. Improved ant colony algorithm for continuous function optimization [ C]// 2010 Chinese Control and Decision Conference. Piseataway: IEEE Press, 2010:20-24.
  • 10ADELANI T O, ALFA A S. Hybrid techniques for large-scale IP traffic matrix estimation [ C]//2010 IEEE International Conference on Communications. Washington, DC: IEEE Computer Society, 2010:1-6.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部