期刊文献+

金纳米粒子与单链DNA的相互作用 被引量:6

Interaction Between Gold Nanoparticles and ssDNA
下载PDF
导出
摘要 研究了金纳米粒子与单链DNA在不同pH值时的相互作用以及金纳米粒子与不同碱基序列单链DNA的相互作用.结果表明,在pH为12.6的强碱性条件下,单链DNA能使金纳米粒子稳定分散在溶液中;在pH为1.4的强酸性条件下,单链DNA能保护金纳米粒子不发生融合,而只发生团聚,且团聚现象具有可逆性.不同寡核苷酸对金纳米粒子的亲和力按poly dA>poly dC>poly dT的顺序依次减弱.单链DNA对纳米金的保护作用强度与单链DNA的长度成正比. The interaction between unmodified gold nanoparticles and single-stranded DNA (ssDNA) was studied at different pH value. And the sequence-dependent stability of ssDNA-GNPs complex was investigated. GNPs precipitated from red colloid solution in the form of aggregation after alkalization with NaOH or dissolve after acidification with HCl. Both processes were irreversible. If the same particles were incubated with ssDNA, ssDNA-GNPs complex were stable against NaOH-induced aggregation at pH = 12.6, and aggregated at pH = 1.4, while redispersed at pH = 12.6. It was concluded that unmodified GNPs could be coated by unmodified ssDNA, which protected GNPs dispersing in solution at pH = 12.6, and prevented GNPs from dissolving at pH = 1.4, as measured by TEM and UV-Vis absorption spectrum. The bindig affinities of oligonucle- otides to GNPs were different in the order of poly dA 〉 poly dC 〉 poly dT. Moreover, longer ssDNA had stronger protective effect to gold nanoparticles. HCl-induced GNPs aggregation could be an effective method to identify the diversity of deoxyribonueleotides in ssDNA sequences.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第1期95-99,共5页 Chemical Journal of Chinese Universities
基金 福建省青年科技人才创新项目(批准号:2006F3128) 厦门大学固体表面物理化学国家重点实验室开放课题基金(批准号:200602)资助
关键词 金纳米粒子 单链DNA 相互作用 SSDNA Gold nanoparticle Single-stranded DNA Interaction ssDNA
  • 相关文献

参考文献17

  • 1Valden M. , Lai X. , Goodman D. W.. Science[J] , 1998, 281(5383) : 1647-1650
  • 2缪谦,金葆康,林祥钦.ss-DNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报,2000,21(1):27-30. 被引量:22
  • 3蔡宏,王延琴,何品刚,方禹之.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].高等学校化学学报,2003,24(8):1390-1394. 被引量:17
  • 4Mirkin C. A. , Letsinger R. L. , Mucic R. C. , et al.. Nature[J] , 1996, 382(6592) : 607-609
  • 5Elghanian R. , Storhoff J. J. , Mucic R. C. , et al.. Science[J] , 1997, 277(5329) : 1078-1081
  • 6Taton T. A. , Mirkin C. A. , Letsinger R. L.. Science[J], 2000, 289(5485) : 1757-1760
  • 7Park S. J. , Taton T. A. , Mirkin C. A.. Science[Jl , 2002, 295(5559) : 1503-1506
  • 8Cao Y. W. C. , Jin R. C. , Mirkin C. A.. Science[J] , 2002, 297(5586) : 1536-1540
  • 9Hill H. D., Mirkin C. A.. Nat. Protoe. [J], 2006, 1(1) : 324-336
  • 10Rosi N. L. , Giljohann D. A. , Thaxton C. S. , et al.. Science[J] , 2006, 312(5776) : 1027-1030

二级参考文献4

共引文献36

同被引文献54

  • 1Lee S. , Perez-Luna V. H.. Anal. Chem.[J].2005, 77(22) : 7204-7211.
  • 2LIUYing-Ju(刘英菊),GUCui-Mei(古翠媚),YUANRui-Chang(袁锐昌).[J].2007,28(6):51.
  • 3Campbell C. T.. Seience[J]. 2004, 306:234-235.
  • 4Mazumder V. , Sun Sh. H.. J. Am. Chem. Soc. [J]. 2009, 131(13) : 4588-4589.
  • 5Rigsby M. A. , Zhou W. P. , Lewera A. , et al.. J. Phys. Chem. C[J], 2008, 112(39) : 15595-15601.
  • 6Zhou X. Ch. , Liu Ch. P. , Liao J. H. , et al.. Journal of Power Sources[J], 2008, 179(2): 481-488.
  • 7Macia M. D. , Herrcro E. , Feliu J. M.. J. Electroanal. Chem.[J]. 2003, 554/555:25-34.
  • 8Liu W. , Huang J.. J. Journal of Power Sources[J] , 2009, 189(2) : 1012-1015.
  • 9Luo J. , Luo Y. , Maye M. M. , et al.. Electrochem. Commun. [J]. 2001 , 3(4) : 172-176.
  • 10GeX. B., YanX. L., Wang R. Y., etal.. J. Phys. Chem. C[J], 2009, 113(17): 7379-7384.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部