期刊文献+

六氟乙烷的热分解特性 被引量:1

Characteristics of Perfluoroethane Thermal Decomposition
下载PDF
导出
摘要 采用管式炉研究了950~1100℃温度区间C2F6的分解特性,并研究了C2F6的初始浓度、反应温度、停留时间对C2F6分解率的影响.实验结果表明,C2F6初始浓度越低、温度越高、反应时间越长,C2F6分解率就越高.同时,热解反应的反应级数应该介于0和1之间.在温度为1100℃,C2F6初始浓度为223.21μmol/L,停留时间为2s时,C2F6分解率高达90%.根据Arrhenius方程计算,在950~1100℃,C2F6热分解反应的活化能(Ea)为313.2kJ/mol,频率因子(A)为8.8×1011s-1. Perfluorocarbons(PFCs) gases have high global warming potential (GWP) and a long lifetime in the atmosphere. It is difficult to decompose these gases due to their tetrahedral structure arising from strong C-F bonds. This paper discussed C2F6 (one of PFCs gases ) thermal decomposition characteristic under 950-1100 ℃ in a laboratory scale reactor. The effects of C2F6 initial concentration, reaction temperature, residence time on C2F6 decomposition ratio were also investigated. The experimental results indicate that the lower initial C2F6 concentration, higher reaction temperature, longer residence time can promote C2F6 decomposition ratio. On the basis of the results, it can be drawn that the reaction order of C2F6 thermal decomposi- tion is between 0 and 1. Above 90% C2F6 decomposition ratio can be achieved under a temperature of 1100 ℃, 223.21 μmol/L initial C2F6 concentration and 2 s residence time. Basis on the calculation, the activation energy(Ea) and the frequency factor(A) of C2F6 thermal decomposition in the temperature range of 950- 1100 ℃ were 313.2 kJ/mol and 8.8 ×10^11s^-1, respectively.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第1期125-128,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金NSFC-JST重大国际合作项目(批准号:50721140649)资助
关键词 六氟乙烷 特性 热分解 C2 F6 Characteristic Thermal decomposition
  • 相关文献

参考文献10

  • 1Laurie S. B.. Reduction of Perfluorocompound(PFC) Emissions[ R], International Sematech Manufacturing Initiative, 2005
  • 2Urashima K. , Kostov K. G., Okayasu Y. , et al.. IEEE Transactions on Industry Applications[ J], 2001,37(5) : 1456-1463
  • 3XU Shou-Chang(徐寿昌).Organic Chemistry,Second Ed.(有机化学,第二版)[M],Beijing:Higher Education Press,1993:7-9
  • 4Takayuki W. , Taira T.. Thin Solid Films[J], 2008, 516:4391-4396
  • 5ZENG Neng-Fang(曾能芳).Steam Plasma Torch Equipment in Treating the Waste Gases of Semiconductor Etching Processes [ D ],Taiwan: National Central University, 2005
  • 6Takaki K. , Urashima K. , Chang J. S.. Thin Solid Films[J], 2006, 506/507:414-417
  • 7Urashima K. , Kostov K. G. , Chang J. S. , et al.. IEEE-IAS Annual Meeting[ C], 1999, 2:1136-1143
  • 8ZHANG Lian(张濂),XU Zhi-Mei(许志美),YUAN Xiang-Qian(袁向前).Chemical Reaction Engineering, Second Edition(化学反应工程原理,第二版)[M],Shanghai: East China University of Science and Technology Press, 2007 : 66-69
  • 9赵晓雷,姬越蒙,刘靖尧,李泽生.NCO自由基与O和N反应的理论研究[J].高等学校化学学报,2008,29(4):809-811. 被引量:2
  • 10黄年华,张强,李治华,熊奇.新型侧基含磷共聚酯的阻燃和热降解动力学[J].高等学校化学学报,2007,28(11):2219-2224. 被引量:14

二级参考文献18

  • 1Chen D. Q. , Wang Y. Z. , Hu X. P.. Polym. Degrad. Stab. [J], 2005, 88(2) : 349-356
  • 2Wang D. Y. , Ge X. G. , Wang Y. Z.. Macromol. Mater. Eng. [J], 2006, 291(6) : 638-645
  • 3WangL. S., WangX. L., YanG. L.. Polym. Degrad. Stab.[J],2000, 69(1): 127-130
  • 4Petreus O. , Vlad-Bubulac T. , Hamciuc C.. Eur. Polym. J. [ J] , 2005, 41 ( 11 ) : 2663-2670
  • 5Chang Y. L. , Wang Y. Z. , Ban D. M.. Macromol. Mater. Eng. [J] , 2004, 289(8) : 703-707
  • 6Vlad T, , Hamciuc C, , Petreus O.. High Perform. Polym. [J] , 2006, 18(3) : 255-264
  • 7Catherine S., SergeB., Michel L. B.. Polym. Degrad. Stab.[J], 1997, 58(3): 303-313
  • 8OzawaT.. Bull. Chem. Soc. Jpn.[J], 1965,38(11): 1881-1886
  • 9Coats A. W. , Redfern J. P.. Nature[J], 1964, 201:68-69
  • 10Zhao H., Wang Y. Z., Wang D. Y.. Polym. Degrad. Stab.[J],2003,80(1): 135-140

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部