期刊文献+

衬底温度对Fe3N薄膜生长和磁性的影响 被引量:1

Effect of Substrate Temperature on Growth and Magnetic Properties of Nanocrystal Fe_3N Thin Films
下载PDF
导出
摘要 采用直流磁控溅射方法,以Si(100)单晶片为衬底,在衬底温度为150~450℃的范围内得到了ε-Fe3N薄膜样品.利用XRD,SEM和VSM等表征手段,研究了衬底温度对ε-Fe3N薄膜的生长和磁性的影响.实验结果表明,随着衬底温度的升高,薄膜的生长速率、晶粒尺寸和单位质量磁化强度均增大,而矫顽力呈现先增加后减小的变化趋势,当衬底温度为350℃时,矫顽力达到最大值18.72kA/m,可以认为此时薄膜样品的晶粒尺寸接近于交换作用长度. The nanocrystal ε-Fe3 N thin films were deposited on Si(100) substrate at different substrate temperatures of 150, 250, 350, 450 ℃ by DC magnetron sputtering. The structure, morphology and magnetic properties of the films deposited at different substrate temperature were characterized via X-ray diffraction (XRD), scanning electron microscopy ( SEM ) and vibrating sample magnetometer ( VSM ). The results show that ε-Fe3N has ferromagnetic properties, and its grain sizes, growth velocity and unsaturated magnetization measured at 400 kA/m field increase with increasing substrate temperature. The coercive force Hc increased to 18.72 kA/m at substrate temperature of 350 ℃ firstly, the Ho decreased with the substrate temperature increasing to 450 ℃. It can be deduced that exchange length (Lex) of nanocrystal ε-Fe3 N thin films was about grain size 30 nm.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第1期148-151,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50832001)资助
关键词 ε—Fe3N薄膜 晶粒尺寸 磁性 交换作用长度 ε-Fe3N thin film Grain size Magnetic property Exchange length
  • 相关文献

参考文献14

  • 1Kim T. K. , Takahashi M.. Appl. Phys. Lett. [J], 1972, 20:492-494
  • 2Jacobs H., Rechenbach D., Zachwieja U.. J. Alloys Compounds[J], 1995, 227:10-17
  • 3Kano M. , Nakagawa T. , Yamamaoto T. A. , et al.. J. Alloys Compounds[J], 2001,327:43-46
  • 4Utsushikawa Y., Niizuma K.. J. Alloys Compounds[J], 1995, 222:188-192
  • 5Wang X. , Zheng W. T. , Tian H. W. , et al.. Applied Surface Science[J] , 2003, 220:30-39
  • 6Li D. , Choi C. J. , Kim B. K. , et al.. J. Magn. Magn. Mater. [J] , 2004, 277:64-70
  • 7Li D., Choi C. J., Yu J. H., et al..J. Magn. Magn. Mater.[J]. 2004, 283:8-15
  • 8Wu X. L. , Zhong W. , Tang N. J. , et al.. J. Alloys Compounds[J] , 2004, 385:294-297
  • 9Huang W. , Wu J. , Guo W.. J. Magn. Magn. Mater. [J], 2006, 307:198-204
  • 10Cao M. , Liu T. , Sun G. , et al.. J. Solid State Chem. [J], 2005, 178:2390-2393

二级参考文献10

  • 1Wang Z.K.,Kuok M.H.,Ng S.C.,et al..Phys.Rev.B[J],2002,89:027201-027206
  • 2Sun L.,Searson P.C.,Chien C.L..Appl.Phys.Lett.[J],2001,79:4429-4432
  • 3Pignard S.,Goglio G.,Radulescu A.,et al..J.Appl.Phys.[J],2000,87:824-829
  • 4Beeli C.,Beeli C..Nanostruct.Mater.[J],1999,11:697-701
  • 5Zharkov S.M.,Zhigalov V.S.,Frolov G.I..Phys.Met.Metallogr.[J],1996,81:328-332
  • 6Tuaillon J.,Dupuis V.,Melinin P.,et al..Philos.Mag.A[J],1997,76:493-498
  • 7Chinnasamy C.N.,Jeyadevan B.,Shinoda K.,et al..J.Appl.Phys.[J],2005,97:10J309-1-3
  • 8Papaconstantopoulos D.A.,Fry J.L.,Brener N.E..Phys.Rev.B[J],1989,39:2526-2528
  • 9Giovanni C.,Giorgio C.,Stefano E.,et al..Mater.Lett.[J],1988,7:47-50
  • 10Jeon Y.T.,Moon Y.,Lee G.H.,et al..J.Phys.Chem.B[J],2006,110:1187-1191

共引文献4

同被引文献11

  • 1Coey J.M.D.,Smith P.A.I..J.Magn.Magn.Mater.[J],1999,200:405-424.
  • 2Telling N.D.,Jones G.A.,Faunce C.A.,et al..J.Vac.Sci.Tech.A[J],2001,19:405-409.
  • 3Bobo J.F.,Chatbi H.,Vergnat M.,et al..J.Appl.Phys.[J],1995,77:5309-5313.
  • 4Grachev S.Y.,Borsa D.M.,Boerma D.O..Surface Sci.[J],2002,515:359-368.
  • 5Costa-Kr(a)mer J.L.,Borsa D.M.,García-Martín J.M..Physical Review B[J],2004,69:144402-1-144402-8.
  • 6Luo X.,Liu S..J.Magn.Magn.Mater.[J],2007,308:L1-L4.
  • 7Pu H.,Jiang F.,Yang Z..Mater.Lett.[J],2006,60:94-97.
  • 8Chatbi H.,Vergnat M.,Bobo J.F.,et al..Solid State Communications[J],1997,102:677-679.
  • 9Liapina T.,Leineweber A.,Mittemeijer E.J..Scripta Materialia[J],2003,48:1643-1648.
  • 10Zhong W.H.,Sun C.Q.,Li S.,et al..Acta Mater.[J],2005,53:3207-3214.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部