期刊文献+

具调节因子Hermite拟谱逼近的误差估计(英文)

ERROR ESTIMATE FOR SCALED HERMITE PSEUDO-SPECTRAL APPROXIMATIONS
下载PDF
导出
摘要 本文研究了具调节因子的Hermite函数的拟谱方法在赋权Sobolev空间中函数的逼近.通过具调节因子的Hermite多项式的性质和相应的Gauss类型的求积公式,得到了在具调节因子的Hermite多项式的零点上的插值算子的稳定性以及误差界.并具有通常的高阶收敛性. Pseudo-spectral approximation of a function in terms of the scaled Hermite functions in certain weighted Sobolev spaces is analyzed. By using properties of the scaled Hermite polynomials and the corresponding Gauss-type quadrature formula, an stability estimate for the interpolation operator on zeros of the scaled Hermite polynomials is obtained. Also error estimate for the interpolation operator is obtained. The results show that the scaled Hermite pseudo-spectral approximation shares high accuracy.
作者 赵廷刚
出处 《数学杂志》 CSCD 北大核心 2009年第1期15-20,共6页 Journal of Mathematics
关键词 Scaled HERMITE多项式 求积公式 拟谱逼近 Scaled Hermite polynomials quadrature formula pseudo-spectral approximation
  • 相关文献

参考文献10

  • 1Bernardi C., Maday Y.. Spectral methods [A]. In Handbook of Numerical Analysis, Vol. V. Techniques of Scientific Computing (Pert 2)[C], Edited by Ciarlet P. G. , Lions J. L. Amsterdam.. North-Holland. 1997 : 209-486.
  • 2Boyd J. P.. Chebyshev and Fourier spectral methods[M](2nd Edition). Mineda, New York: Dover Publication Inc. ,2001.
  • 3Guo Benyu,Shen jie. Laguerre-Galerkin method for nonlinear partial differential equations on a semiinfinite interval[J]. Numer. Math. , 2000, 86(6): 635-654.
  • 4Xu Chenglong, Guo Benyu. Hermite spectral and pseudospectal methods for partial differential equations in multiple dimensions[J]. Comp. Appl. Math. ,2003, 22(2) : 167-193.
  • 5Guo Benyu. Error estimation of Hermite spectral method for nonlinear partial differential equations [J]. Math. Comp. , 1999, 68(3):1067-1078.
  • 6Weideman J. A. C. The eigenvalues of Hermite and rational spectral differentiation matrices[J]. Numer. Math.. 1992. 61(4) :409-431.
  • 7Tang Tao. The Hermite spectral method for Gauss-type functions[J]. SIAM J. Sci. Comput. , 1993, 14(3) : 594-606.
  • 8Aguirre J..Rivas J.. Hermite pseudospectral approximation: An error estimate[J]. J. Math. Anal. Appl., 2005, 304(1):189-197.
  • 9Bergh J. ,LofstrOm J. Interpolation Spaces, An Introduction[M]. Berlin: Springer-Verlag, 1976.
  • 10Szego G.. Orthogonal polynomials[M](4nd Edition). Amer. Math. Soc. Colloq. Publ. No. 23, Providence: AMS. ,1975.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部