期刊文献+

渐近非扩张的非自映象不动点的迭代逼近问题 被引量:6

ITERATIVE APPROXIMATION PROBLEM OF FIXED POINTS FOR ASYMPTOTICALLY NONEXPANSIVE NONSELF-MAPS
下载PDF
导出
摘要 本文研究了渐近非扩张的非自映象不动点的迭代逼近问题,利用一致凸Banach空间中凸性模的有关不等式及新的分析方法,通过引入一新的修正的Ishikawa型迭代程序,在一致凸实Banach空间中,获得了此迭代序列强收敛于渐近非扩张的非自映象的不动点的逼近.改进和扩展了文献[2-5,9,10]的相关结果. The purpose of this paper is to investigate the iteration approximation problem of the fixed point for asymptotically nonexpansive nonself-maps,by using corresponding inequality of convexity modular in a uniformly convex Banach spaces and new analysis methods and introducing a new modified Ishkawa type iterative process,and new results on strong eonvergences of the iterative sequence of the fixed point for asymptotically nonexpansive nonself-maps in a real uniformly convex Banach space are obtained. These improve and extend som corresponding results in [2-5,9,10].
出处 《数学杂志》 CSCD 北大核心 2009年第1期87-92,共6页 Journal of Mathematics
基金 国家自然科学基金资助项目(10271025) 浙江省自然科学基金资助项目(Y606717) 浙江省教育厅科研项目(20060074 20061154)
关键词 渐近非扩张的非自映象 修正的Ishikawa型迭代序列 修正的Mann迭代序列 不动点 一致凸BANACH空间 Asymptotically nonexpansive nonself-maps modified Ishikawa type iterative sequence modified Mann iterative sequence fixed point uniformly convex Banach space.
  • 相关文献

参考文献10

  • 1Giebel K. , Kirk W. A.. A fixed point theorem for asymptotically nonexpansive mappings[J]. Proc Amer Math Soc, 1972,35(1) :171-174.
  • 2Schu J.. Iterative construction of fixed points of asymptotically npnexpansive mappings[J]. J Math Anal Appl, 1991,158(2) ,407-413.
  • 3Rhoades B. E.. Fixed point iterations for certain nonlinear mappings[J]. J Math Anal Appl, 1994, 183(1) : 118-120.
  • 4Osilike M. O., Aniagbosor S. C.. Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings[J]. Math Comput Modelling, 2000,32(10):1181-1191.
  • 5Chidume C. E., Ofoedu E. U., Zegeye H.. Strong and weak convergence theorems for asymptotically nonexpansive mappings[J]. J Math Anal Appl, 2003,280(2):364-374.
  • 6Xu Zongben, Roach G. F.. Charaeleristie inequalities for uniformly eonvex and uniformly smooth Banaeh spaces[J]. J Math Anal Appl, 1991,157(1) :189-210.
  • 7Liu Qihou. Iterative sequences for asymptotically quasinonexpansive mappings with error member[J]. J Math Anal Appl, 2001,259(1) :18-24.
  • 8Alber Y. L. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operator of Monotone and Accretive Type[M]. New York, Dekker: 1996,15-50.
  • 9胡长松.Banach空间中渐近非扩张映射的不动点迭代[J].应用数学,2004,17(4):568-574. 被引量:2
  • 10Xu Benlong. Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces[J],J Math Anal Appl,2002,267(2) :444-453.

二级参考文献9

  • 1Osilike M O, Aniagbosor S C. Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings[J]. Math Computer Modelling,2000,32: 1191- 1191.
  • 2Chidume C E,Ofoedu E U,Zegeye H. Strong and weak convergence theorems for asymptotically nonexpansive mappings[J]. J Math Anal Appl , 2003,280: 364 - 374.
  • 3Noor A M. New approximation schemes for general variational inequalities[J]. J Math Anal Appl ,2000,251:217-229.
  • 4Noor A M. Three-step iterative algorithms for multivalued quasi variational inclusions[J]. J Math Anal Appl ,2001,255:589-604.
  • 5Xu Benlong. Fixed point iterations for asymptotically nonexpansive mappings in Banaeh spaees[J]. J Math Anal Appl , 2002,267: 444 - 453.
  • 6Schu J. Weak and strong convergence of fixed points of asymptotically nonexpansive mappings[J]. Bull Austral Math Soc ,1991,43:153-159.
  • 7Gornicki J. Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces[J]. Comment Math Univ Carolin, 1989,30 : 249-252.
  • 8胡长松.L_p中渐近半收缩映象拟Ishikawa迭代过程的收敛性[J].系统科学与数学,2000,20(1):40-46. 被引量:2
  • 9胡长松,周少波.L_p中渐近非扩张映射迭代序列收敛定理[J].应用数学,2002,15(2):18-21. 被引量:4

共引文献1

同被引文献60

  • 1熊明,王绍荣,杨泽恒.Banach空间中几乎渐近非扩张型映象不动点的迭代逼近问题[J].四川大学学报(自然科学版),2007,44(3):485-489. 被引量:5
  • 2Xu H K. Inequalities in Banaeh spaces with applieations[J]. Nonl Artal,1991,16:1127-1138.
  • 3Nakajo K, Shimoji K, Takahashi W. Strong convergence theorems by the hybrid method for families of nonexpansive mappings in a Hilbert spaces[J]. Taiwan Residents J Math, 2006,10:339-360.
  • 4Wittmann R. Appoximation of fixed points of nanexpansive mapping[J]. Arch Math, 1992, 58:486-491.
  • 5Jean Philippe, Chancelier, Iterative schemes for computing fixed point of nanexpansive mappings in Banach space[J]. Jour Comp Appl Math,2009,353:141-153.
  • 6Chang S S, Chen Y Q, Cho Y J, Lee B S. Fixed point theorems for nonexpansive operators with dissipative perturbations in cones[J]. Comm Math Univ Caro, 1998,39(1):49-54.
  • 7Benlong Xu. Fixed point iteratios for asymptotically nonexpansive mapping in Banach space[J]. Jour Comp Appl Math, 2002,267:444-453.
  • 8Liu Qihou. Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniform Banach space[J]. Jour Comp Appl Math. 2002,266:468-471.
  • 9Sahu D R. Strong convergence theorems for nonexpansive type and non-self multi-valued mappings [J]. Nonl Anal, 1999,37:401-407.
  • 10Geobel K, Kirk W A. A fixed point thoerem for asymptotically nonexpansive mapping[J]. Proc Amer Math Soc, 1972,35(1):171-174.

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部