摘要
本文研究了渐近非扩张的非自映象不动点的迭代逼近问题,利用一致凸Banach空间中凸性模的有关不等式及新的分析方法,通过引入一新的修正的Ishikawa型迭代程序,在一致凸实Banach空间中,获得了此迭代序列强收敛于渐近非扩张的非自映象的不动点的逼近.改进和扩展了文献[2-5,9,10]的相关结果.
The purpose of this paper is to investigate the iteration approximation problem of the fixed point for asymptotically nonexpansive nonself-maps,by using corresponding inequality of convexity modular in a uniformly convex Banach spaces and new analysis methods and introducing a new modified Ishkawa type iterative process,and new results on strong eonvergences of the iterative sequence of the fixed point for asymptotically nonexpansive nonself-maps in a real uniformly convex Banach space are obtained. These improve and extend som corresponding results in [2-5,9,10].
出处
《数学杂志》
CSCD
北大核心
2009年第1期87-92,共6页
Journal of Mathematics
基金
国家自然科学基金资助项目(10271025)
浙江省自然科学基金资助项目(Y606717)
浙江省教育厅科研项目(20060074
20061154)