摘要
本文研究了三维完备非紧具非负Ricci曲率的黎曼流形的几何拓扑性质.通过对流形本身与流形的万有覆盖空间体积增长阶的比较,证明了对具非负Ricci曲率和严格(1+δ)阶体积增长的三维完备非紧的黎曼流形是可缩的.
The paper studies the geometric and topological properties of a complete noneompact Riemannian three-dimensional manifold with nonegative Ricct curvature. By comparing the volume growth order of the manifold itself to that of its universal covering space, the paper proves that every three-dimensional with nonnegative Ricci curvature and (1+δ)-order volume growth in strict sense must be contractible provided that its universal covering is finite.
出处
《数学杂志》
CSCD
北大核心
2009年第1期103-108,共6页
Journal of Mathematics
基金
福建省自然科学基金(T0650010)
集美大学预研基金资助课题