期刊文献+

具非负Ricci曲率和严格(1+δ)阶体积增长的三维流形 被引量:1

ON COMPLETE THREE-DIMENSIONAL MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE
下载PDF
导出
摘要 本文研究了三维完备非紧具非负Ricci曲率的黎曼流形的几何拓扑性质.通过对流形本身与流形的万有覆盖空间体积增长阶的比较,证明了对具非负Ricci曲率和严格(1+δ)阶体积增长的三维完备非紧的黎曼流形是可缩的. The paper studies the geometric and topological properties of a complete noneompact Riemannian three-dimensional manifold with nonegative Ricct curvature. By comparing the volume growth order of the manifold itself to that of its universal covering space, the paper proves that every three-dimensional with nonnegative Ricci curvature and (1+δ)-order volume growth in strict sense must be contractible provided that its universal covering is finite.
机构地区 集美大学理学院
出处 《数学杂志》 CSCD 北大核心 2009年第1期103-108,共6页 Journal of Mathematics
基金 福建省自然科学基金(T0650010) 集美大学预研基金资助课题
关键词 三维流形 非负RICCI曲率 (1+δ)阶体积增长 微分同胚 Three-dimensional manifold nonnegative Ricci curvature (1+δ)-order volume growth diffeomorphism
  • 相关文献

参考文献16

  • 1Sehoen, R. , Yau, S.T. Complete three-dimensional manifolds with positive Rieci curvature and scalar curvature[J], Ann. Math. Studies, 1982, 102(2): 209-228.
  • 2Anderson, M. , Rodriguez, L. Minimal surfaces and 3-manifolds of nonnegative Ricci curvature[J]. Math. Ann., 1989, 284(3): 461-475.
  • 3Shi, W. Complete noncompact three manifolds with nonnegative Rieci curvature[J], J. Diff. Geom. , 1989, 29(2): 356-360.
  • 4Zhu, S. On three manifolds of quasi-positive Rieei eurvature[J], Proc. Amer. Math. Soc. , 1994, 120(3) : 569-572.
  • 5Hamilton R. Three-manifolds with positive Ricci curvature[J], J. Diff. Geom. , 1982, 17(2) : 255-306.
  • 6Zhan H. The open manifold with zero ideal boundary[J], SEAMS, 1999, 23(1) : 153-158.
  • 7Kasue, A. A compatification of a manifold with asymptotically nonnegative curvature[J], Ann, Scient. EC. Norm. Sup. 1988, 21(4):593-622.
  • 8Zhu, S. A finiteness theorem for Ricci curvature in dimension three[J]. J. Diff. , Geom. , 1993, 37(4): 711-727.
  • 9Shen Z. , Wei, G. Volume growth and finite topological type[J], Proc. of Sym, in Pure Math. Soc.1993, 120:569-572.
  • 10Hempl, J. 3-manifolds, Ann. of Math. Studies[J], Vol. 86, Princeton University Press. 1976.

二级参考文献12

  • 1伍鸿熙,黎曼几何选讲,1993年
  • 2J Cheeger,D Gromoll.On the structure of complete manifolds of nonnegative curvature[J].Ann of Math,1972,96:413-443.
  • 3G Perelman.Proof of the soul conjecture of Cheeger and Gromoll[J].J Diff Geom,1994,40:209-212.
  • 4T Shioya.Splitting theorems for nonnegatively curved open manifolds with large ideal boundary[J].Math Z,1993,212:223-238.
  • 5L Guijarro,V Kapovitch.Restrictions of the geometry at infinity of nonnegatively curved manifolds[J].Duke Math J,1995,78:257-276.
  • 6L Guijarro,P Petersen.Rigidity in nonnegative curvature[J].Ann Scient EC Nom Sup,1997,30:595-603.
  • 7W Klingenberg.Riemannian geometry[M].New York:de Gruyter,1983.
  • 8G Walschap.Nonnegatively curved manifold with souls of codimension 2[J].J Diff Geom,1988,27:525-537.
  • 9Z Shen.On complete manifolds of nonnegative kth-Ricci curvature[J].Tran of the Amer Math Soc,1993,338:289-309.
  • 10詹华税.完备非紧黎曼流形之Busemann函数[A].厦门市第二届青年学术年会论文集[C].厦门:厦门大学出版社,1998,353-357.

共引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部