期刊文献+

多输入/多输出GA-BP网络压铸工艺参数设计系统 被引量:3

Die-Casting Process Parameters Design System Based on a Multi-Input/Multi-Output GA-BP Neural Network
下载PDF
导出
摘要 遗传算法全局搜索能力强,而BP神经网络擅长局部精确搜索,采用遗传算法优化神经网络初始权值的方法,实现两种算法的结合,达到优势互补,并首次将内浇口类型及其厚度作为设计输出参数引入设计系统,构建更实用的压铸工艺参数优化设计多输入/多输出双隐层GA-BP神经网络。通过实例,验证了本系统所给出的压铸工艺设计结果的合理性。 Genetic algorithms (GA) are powerful approaches to solve global optimization problems; while BP neural networks are effective methods for searching local optimum. In this paper, to overcome the local convergence problem of BP network a genetic algorithm is proposed to optimize the initial weights of BP network and for the first time the style and thickness of ingate are included in output parameters of the optimizing system. The validation and effectiveness of this multi-input/multi-output double hidden layers GA-BP neural network for die-casting parameters design system are tested and approved by example.
出处 《铸造》 CAS CSCD 北大核心 2009年第1期49-52,共4页 Foundry
关键词 GA-BP网络 压铸工艺参数 遗传算法 优化 GA-BP neural network die-casting parameters genetic algorithms optimization
  • 相关文献

参考文献10

二级参考文献23

  • 1罗蓬.模糊神经网络在压铸型浇注系统计算机辅助设计中的应用[J].贵州工学院学报,1996,25(6):40-44. 被引量:5
  • 2罗蓬.压力铸造充填过程的流体动力学模型及其应用[J].铸造技术,1997(1):8-9. 被引量:10
  • 3黄可鸣.专家系统导论[M].南京:东南大学出版社,1998.1-10.
  • 4[1]Street A C. The Die Casting Book [ M ]. Surrey: Portcullis Press Ltd. , 1986 (Second Edition)
  • 5[2]Chen C H. Fuzzy Logic and Neural Network Handbook [M]. New York: McGraw-Hill, Inc. , 1996
  • 6[3]Dayhoff J E. Neural Network Architectures: An Introduction[ M ]. New York: Yah Nostrand Reinhold, 1990
  • 7[4]Babaguchi N. et al. Connectionist model binarization[ A]. In:C. H. Chen (Ed). Neural Networks in Pattern Recognition and Their Applications[ M ]. Singapore:World Scientific Publishing Co. Pte. Ltd. , 1991:127 ~ 149
  • 8[5]Lin C T, et al. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System [ M ]. Upper Saddle River, NJ:Prentice-Hall PTR, 1996
  • 9[6]Kartalopoulos S V. Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications [ M ]. New York:IEEE, Inc. ,1996
  • 10[7]Demuth H, et al. Neural Network Toolbox for Use with MATLAB: User's Guide[ M ]. The MathWorks, Inc. , 1993

共引文献23

同被引文献11

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部