期刊文献+

基于多级SVM的回转窑烧结状态识别方法 被引量:1

Recognition Based on Multilevel SVM for Different Sintering States in Rotary Kiln
下载PDF
导出
摘要 提出了一种新的基于多级SVM分类器的设计方法,并将该方法应用于回转窑的正常烧结、过烧结和欠烧结3种烧结状态的识别.即首先利用改进的双快速行进法从烧结图像中分割出物料区、黑把子区、火焰区、充分燃烧区等关心区域(ROIs),然后从ROIs中提取颜色、形状与纹理等特征,基于One-Versus-Another方法建立烧结状态预处理分类器模型,进行烧结状态的多类别分类;其次研究预处理分类器出错样本点的分布,将容易混淆的样本点作为一类;最后基于多级SVM方法重新建立分类器模型,进行烧结状态的分类.实验证明该方法快速、准确、推广性强. A new design method based on multilevel SVM classifier is presented to recognize the normal sintering, oversintering and undersintering states in rotary kiln. The ROIs(regions of interesting) were segmented from the images of sintered materials by an improved dual-fast marching method, including the zones of materials, blackbar, flame and full calcination. Then, the characteristics of colour, shape and vein were extracted from ROIs to develop a pre-treated classifier model based on One-Versus-Another method to classify the different sintering states. The distribution of wrong sample points provided by the pre-treated classifier was studied, and the sample points that are easy to confuse with each other were classified as the same class. Based on the multilevel SVM, a new classifier model was thus redeveloped for different sintering states. The experimental results showed that the new model is fast and accurate with wide applications.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期54-57,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60534010) 国家重点基础研究发展规划项目(2002CB312201) 国家高技术研究发展计划重点项目(2007AA041404)
关键词 烧结状态 SVM 模式识别 回转窑 sintering state SVM(support vector machine) pattern recognition rotary kiln
  • 相关文献

参考文献11

  • 1Vapnik V N. The nature of statistical learning theory[M]. New York : Springer-Verlag, 2000.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 3Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3):273 297.
  • 4Scholkopf B, Mika B, Burges C C, et al. Imput space versus feature space in kernel-based methods [J]. IEEE Transactions on Neural Networks, 1999, 10 ( 5 ) : 999 - 1017.
  • 5张炤,张素,章琛曦,陈亚珠.基于多核支持向量机的概率密度估计方法[J].计算机仿真,2006,23(1):85-88. 被引量:7
  • 6Arenas-Garcia J, Perez-Cruz F. Multi-class support vector machines: a new approach [C ] // IEEE International Conference on Acoustics, Speech and Signal Processing. Hongkong: IEEE, 2003 : 781 - 784.
  • 7姜慧研,崔晓亮,周晓杰,柴天佑.基于改进的双快速行进法的图像分割方法[J].系统仿真学报,2008,20(3):803-806. 被引量:10
  • 8Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6) :610- 621.
  • 9Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification[EB/OL]. (2003 - 08 - 10) [2007 - 10 -08]. Http://www. csie. ntu. edu. tw/-cjlin/papers/guide/ guide.pdf.
  • 10朱永生,张优云.支持向量机分类器中几个问题的研究[J].计算机工程与应用,2003,39(13):36-38. 被引量:33

二级参考文献29

  • 1VNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2V Vapnik and S Mukherjee.Support Vector Method for Multivariate Density Estimation[M].Advances in Neural Information Processing Systems,MIT Press.4,2000.659-665.
  • 3J Weston,A Gammerman,M O Stitson,V Vapnick,V Vovk and C Watkins.Support Vector Density Estimation[M].Advances in Kernel Methods,MIT Press.1999.
  • 4K Fukunaga and R R Hayes.The Reduced Parzen Classifier[J].IEEE Transactions on Pattern Analysis and Machine Intelligence1989,11(4):423-425.
  • 5J C Platt.Fast training of support vector machines using sequential minimal optimization[M].Cambridge,MA:MIT Press,1999.185-208.
  • 6B E Bose,I M Guyon,V Vapnik.A Training Algorithm for Optimal Margin Classifiers [C] Proceedings of the Fifth Annual Workshop on Computational Learning Theory,Pittsburgh,PA,USA:[ s.n.],1992.144-152.
  • 7E Osuna,R Freund,F Girosi.An improved training algorithm for support vector machines [C].Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing.New York:IEEE Press,1997.276-285.
  • 8Scholkopf B,Mika S,Burges C et al.Input space vs.feature space in kernel-based methods [J].IEEE Transactions on Neural Networks, 1999; 10(5) : 1000-1017.
  • 9Duan K,Keerrthi S S,Poo A N.Evaluation of simple performance measures for turning svm hyperparameters [R].Control Division Technical Report CD-01-11 ,Department of Mechanical Engineering,National University of Singapore,2001-09.
  • 10Baudat G,Anouar F,Kemel-based methods and function appreximation[C].In:International Joint Conference on Neural Networks(IJCNN01), 2001 : 1244-1249.

共引文献2317

同被引文献8

  • 1沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 2雷秀娟,史忠科,王来军,毕业,仉亚男.粒子群优化算法在多目标优化中的应用与仿真[J].计算机工程与应用,2006,42(2):28-29. 被引量:7
  • 3Vapnik V N. The nature of statistical lemming theory[M]. New York: Springer-Verlag, 2000.
  • 4Frans V D B, Andries P E. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3) :225 239.
  • 5Sethian J A. A fast marching level set method for monotonically advancing fronts [J]. Proceedings of the National Academy of Sciences, 1996,93(4) :1591 - 1595.
  • 6Jiang H Y, Cheng Z Y, Huo Y, et al. Research on image denoising methods based on wavelet transform and rolling-ball algorithm [ C ]// Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition. Beijing, 2007:2-4.
  • 7Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [ EB/OL ]. (2003 - 08 - 10). http:/// www. csie. ntu. edu. tw/-cjlin/papers/guide/guide. pdf.
  • 8姜慧研,崔晓亮,周晓杰,柴天佑.基于改进的双快速行进法的图像分割方法[J].系统仿真学报,2008,20(3):803-806. 被引量:10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部