摘要
分别利用一阶、二阶泰勒展开公式逼近NURBS样条参数,对NURBS曲线插补算法进行了研究.算例证明该算法可以获得与指令速度几乎完全一致的插补结果.给出了一阶、二阶泰勒展开方法的速度波动与曲率的关系,弦误差与插补周期的关系.指出泰勒方法NURBS曲线插补对于误差控制是一种开环方法,但是它忽略了机械系统的输出能力,当机械系统的输出能力不足时将会出现较大的加工误差.
The NURBS (non-uniform rational B-spline) interpolator was studied with the first and second order Taylor expansion to approximate NURBS parameter. Numerical example results proved that the interpolation velocity is almost the same to reference velocity. The relationships between curvature and velocity fluctuating and between chord error and interpolation period in the Taylor expansion were given. It was found that the NURBS interpolator with Taylor expansion is actually a kind of open loop method. However, it ignores the output capability of a mechanical system and, therefore, big processing error may occur when the output capability of the mechanical system is insufficient.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第1期117-120,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(50775029)
关键词
NURBS
插补
泰勒展开
轨迹规划
梯形速度
NURBS
interpolator
Taylor expansion
trajectory planning
trapezoidal velocity