期刊文献+

基于改进BP神经网络模型的地面沉降预测及分析 被引量:32

Prediction and Analysis of Land Subsidence Based on Improved BP Neural Network Model
下载PDF
导出
摘要 针对区域性地面沉降问题,用遗传算法优化BP神经网络的初始权重,建立了地面沉降预测模型.该模型克服了BP神经网络模型存在的收敛速度慢、易陷入局部极小点的缺点.采用后验差检验法对模型拟合结果进行了检验,结果表明模型具有很好地拟合与泛化能力.应用该模型对地下水位影响强度进行了分析,表明地面沉降与地下水位存在一致响应趋势. In order to control land subsidence efficiently, a coupling model of genetic algorithm and back-propagation (BP) neural network was applied to the simulation of land subsidence, aiming at overcoming shortcomings of the BP neural network model, such as falling into local minimum value easily and being slow in convergence. The coupling model passed the posterior-variance-test and good fitting and generalization were obtained. The results calculated through the proposed model indicate that the variation of land subsidence rate in the researched district has consistent tendency with underground water level.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2009年第1期60-64,共5页 Journal of Tianjin University(Science and Technology)
基金 国家重点基础研究发展规划(973)资助项目(2007cb407306) 国家自然科学基金资助项目(50708063)
关键词 地面沉降 BP神经网络 遗传算法 初始权值 后验差检验 land subsidence BP neural network genetic algorithm primary weights posterior-variance-test
  • 相关文献

参考文献15

  • 1Hu R L, Yue Z Q, Wang L C, et al. Review on current status and challenging issues of land subsidence in China [J]. Engineering Geology, 2004,76 (1/2) : 65-77.
  • 2Sato H P, Abe K, Ootaki O. GPS-measured land subsidence in Ojiya city, Niigata prefecture, Japan [J]. Engineering Geology, 2003,67 (3/4) : 379-390.
  • 3Shi Xiaoqing, Wu Jichun, Ye Shujun, et al. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai city, China [J].Engineering Geology, 2008, 100 ( 1/2 ) : 27-42.
  • 4Shearer T R. A numerical model to calculate land subsidence, applied at Hangu in China [J]. Engineering Geology, 1998,49 (2) : 85-93.
  • 5Chang L C, Chu H J, Hsiao C T. Optimal planning of a dynamic pump-treat-inject groundwater remediation system [J]. Journal of Hydrology, 2007,342 ( 3/4 ) : 295- 304.
  • 6董国凤,张建军,赵全,赵新华.Numerical Simulation of Land Subsidence at Tanggu District in Tianjin, China[J].Transactions of Tianjin University,2006,12(6):457-462. 被引量:2
  • 7Kuo Y M, Liu C W, Lin K H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan [J].Water Research, 2004,38 ( 1 ) : 148-158.
  • 8Larson K J, Basagaoglu H, Marifio M A. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman city area, California,using a calibrated numerical simulation model [J ] . Journal of Hydrology, 2001,242 ( 1/2 ) : 79-102.
  • 9玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 10张建雄,唐万生.基于混沌遗传算法的一类非线性两层混合整数规划问题求解[J].系统工程理论方法应用,2005,14(5):429-433. 被引量:14

二级参考文献22

共引文献329

同被引文献283

引证文献32

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部