期刊文献+

用微粒群算法实现天然气管网运行最优化 被引量:6

Optimizing the Operation of Natural Gas Pipeline Network by Particle Swarm Optimization
下载PDF
导出
摘要 以天然气公司的收益最大化为目标,建立了天然气管网优化运行的数学模型。传统的直接搜索法有网格法和复合形法,但这两种方法收敛速度较慢,工作量较大。采用以自适应惩罚函数为目标函数的微粒群算法,并对算法的收缩因子与自适应性加以修正。结合管网稳态分析的节点压力法,编制计算程序对模型进行求解,结果表明,该方法能够高效获得高性能的优化运行调度结果。 Taking the gas company's income as a goal, an optimal running mathematical model of natural gas pipeline network is established. Conventional direct searching method includes network method and compound method. But these methods involve large amount of workload which results in slowly convergent speed. The Particle Swarm Optimization (PSO) adopts a self-adapting penalty function as a target function and a shrink factor and self-adaptation of the algorithm is amended. Combined with node pressure technique, which is used for steady-state analysis of pipeline network, an applicable program is developed for the purpose of solving the model. Practical example of calculations shows that this method can get a highly optimized performance result effectively in pipeline network operation.
出处 《油气储运》 CAS 北大核心 2009年第1期7-11,共5页 Oil & Gas Storage and Transportation
关键词 天然气管网 最优化 运行 微粒群算法(PSO) 模型求解 natural gas pipeline network, optimization, operation, Particle Swarm Optimization (PSO),mathematical model
  • 相关文献

参考文献8

  • 1杨毅,李长俊,尚蜀娅.天然气管网输配气量优化研究[J].天然气工业,2006,26(1):123-125. 被引量:8
  • 2GB50251—2003输气管道工程设计规范,中国计划出版社(北京),2003.
  • 3Kennedy J, Eberhart R : Particle Swarm Optimization, IEEE Int. Conf on Neural Networks, Perth, Australia,1995.
  • 4Hu X H, Eberhart R C, Shi Y H: Engineering optimization with particle swarm, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003.
  • 5Konstantinos E, Parsopoulos N, Michael N: Particle swarm optimization method for constrained optimization problems, Proceeding of the Euro-International Symposium on Computational Intelligence, 2002.
  • 6Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 2002,6 (1).
  • 7Yasuda K, Ide A, lwasaki N. Adaptive particle swarm optimization, IEEE International Conference on Systems, Man and Cybernetics, 2003,2.
  • 8Yuhui Shi,Russell C Eberhart: Parameter selection in particle swarm optimization, Evolutionary Programming Ⅶ ( 1998), Lecture Notes in Computer Science 1447, 591-600, Springer.

二级参考文献3

共引文献7

同被引文献62

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部