期刊文献+

一种基于改进客观聚类分析的模糊辨识方法 被引量:2

A fuzzy identification method based on the enhanced objective cluster analysis
原文传递
导出
摘要 针对模糊辨识中采用迭代和人为决策法确定模糊规则数时易受噪声和人为因素的影响,而导致算法鲁棒性较差和计算量较高的问题,提出一种基于改进客观聚类分析的模糊辨识方法.首先引入并改进了客观聚类分析法,克服了迭代导致的规则数冗余,降低了人为因素对聚类结果的影响,从而减小了计算量并提高了鲁棒性;然后结合模糊聚类和稳态卡尔曼滤波法,分别辨识了前提和结论参数;最后通过Box-Jenkins仿真实例验证了所提方法的有效性. In fuzzy identification, iterations or human decision making are usually used to identify fuzzy rules. However, the clustering result is possibly affected by noise and artificial factor, which results in weak robustness and high computation cost. In this paper, a fuzzy identification method based on the enhanced objective cluster analysis is presented. Firstly, the objective cluster analysis algorithm is introduced and enhanced such that the redundant rule numbers caused by iterations is overcomed and the effect of human factor on the clustering result is decreased. Therefore, the computation burden is reduced, and the robustness of the algorithm is improved. Then, the premise parameters and the consequence parameters are identified by fuzzy c-means clustering algorithms and the stable Kalman filter algorithm respectively. The effectiveness of the proposed method is verified by the example of BoxJenkins gas furnace simulation.
作者 王娜 杨煜普
出处 《控制与决策》 EI CSCD 北大核心 2009年第1期13-17,22,共6页 Control and Decision
基金 国家973计划项目(2004CB720703)
关键词 模糊辨识 客观聚类分析 稳态卡尔曼滤波 模糊聚类 Fuzzy identification Objective clustering analysis Stable-state Kalman filter Fuzzy clustering
  • 相关文献

参考文献10

  • 1Casillas J, Cordon O, Herrera F, et al. Interpretability issues in fuzzy modelling[M]. New York: Springer, 2003.
  • 2Hadjili M L, Wertz V. Takagi-Sugeno fuzzy modeling incorporating input variables selection[J]. IEEE Trans on Fuzzy Systems, 2002, 10(6): 728-742.
  • 3Kaymak U, Babuska R. Compatible cluster merging for fuzzy modeling[C]. Proe of IEEE Int Conf on Fuzzy Systems. Yokohama: IEEE Press, 1995: 897-904.
  • 4John Yen, Liang Wang. Simplifying fuzzy rule-based models using orthogonal transformation methods [J].IEEE Trans on Systems, Man and Cybernetics, 1999, 29(1): 13-24.
  • 5李柠,李少远,席裕庚.基于满意聚类的多模型建模方法[J].控制理论与应用,2003,20(5):783-787. 被引量:24
  • 6Mollineda R, Vidal E. A relative approach to hierarchical clustering [C]. Pattern Recognition and Applications, Frontiers in Artificial Intelligence and Applications. Amsterdam: IOS Press, 2000.
  • 7Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
  • 8Box G E P, Jekins G M, Reinsel G. Times series analysis, forecasting and control [M]. San Francisco: Holden Day, 1970.
  • 9Tsekourasa G, Sarimveisb H, George E K. A hierarchical fuzzy-clustering approach to fuzzy modeling [J]. Fuzzy Sets and Systems, 2005, 15(2) : 245-266.
  • 10Dong-won Kim, Gwi-tae Park. Using interval singleton type 2 fuzzy logic system in corrupted time series modelling[M]:Berlin: Springer, 2005.

二级参考文献14

  • 1MURRY-SMTTH R, JOHANSEN T A. Multiple Model Approaches to Modeling and Control [M]. London:Taylor and Francis, 1997.
  • 2EIKENS B, KAR1M M N. Process identification with multiple neural network models [J]. Int J Control, 1999,72(7/8):576- 590.
  • 3POTIMANN M, UNBEHAUEN H, SEBORG D E. Application of a general multi-model approach for identification of highly nonlinear processed--a case study [J]. Int J Control, 1993, 57(1):97-120.
  • 4KRISHNAPURAM R, CHIN-PIN F. Fitting an unknown number of lines and planes to image data through compatible cluster merging[J]. Pattem Recognition, 1992,25(4):385-400.
  • 5KAYMAK U, BABUSKA R. Compatible cluster merging for fuzzy modelling [ A ]. Proc of IEEE Int Conf on Fuzzy Systems [ C ].Yokohama: IEEE Press, 1995:897 - 904.
  • 6ZHONG W. Studies on soft-sensing & advanced control stategies with applications in petrochemical processes [ D ]. Shanghai: East China University of Science and Technology, 1999.
  • 7GUSTAFSON D, KESSEL W C. Fuzzy clustering with a fuzzy covariance matrix [A]. Proc of IEEE Conference on Decision and Control [C]. San Diego, CA:IEEE Press, 1979:761 - 766.
  • 8TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [ J ]. IEEE Trans on Systems ,Man, and Cybemetics, 1985,15(1): 116-132.
  • 9BABUSKA B. Fury Modeling for Control[ M ]. Boston: Kluwer Academic Publishers, 1998.
  • 10NAKANISHI H, TURKSEN I B, SUGENO M. A review and comparsion of six reasoning method [ J ]. Fuzzy Sets and Systems,1992,57(2) :257 - 294.

共引文献23

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部