期刊文献+

全局自适应神经网络跟踪控制及逼近域确定 被引量:3

Globally adaptive neural network tracking control and determination of approximation domain
原文传递
导出
摘要 针对自适应神经网络跟踪控制问题,提出一种确定逼近域的方法.采用参考信号取代未知非线性函数中的系统输出,神经网络用于逼近以参考信号为输入的未知不确定项.可以利用参考信号的界预先确定神经网络逼近域,再采用自适应鲁棒方法处理由于函数输入置换所引起的另一类不确定项.所得到的闭环系统是全局稳定的.仿真实例说明了该控制方法的有效性. A method to determine the neural network approximation domain is developed for adaptive neural network tracking control problem. The system outputs in unknown nonlinear functions are replaced by the reference signals so that neural networks are employed to approximate the unknown uncertainties whose inputs are the reference signals. The designer can determine neural network approximation domain based on the bound of the reference signals. The adaptive robust technique is used to handle the other kind of uncertainties which results from the replacements of function inputs. The closed-loop system is proved to be globally stable. A simulation example shows the effectiveness of the control method.
出处 《控制与决策》 EI CSCD 北大核心 2009年第1期18-22,共5页 Control and Decision
基金 国家自然科学基金项目(60804021 60775013)
关键词 逼近域 自适应 神经网络 跟踪控制 全局稳定 Approximation domain Adaptive Neural network Tracking control Globally stable
  • 相关文献

参考文献5

二级参考文献17

共引文献26

同被引文献25

  • 1李冬辉.楼宇自控系统中节能控制的研究[J].低压电器,2004(6):15-17. 被引量:13
  • 2吴志明,孔利加.建筑设备监控系统的设计[J].计算机工程,2004,30(20):195-196. 被引量:3
  • 3刘恩东,井元伟,王珂,张嗣瀛.基于神经网络的非线性汽门控制器鲁棒逆推设计[J].电力自动化设备,2005,25(10):13-16. 被引量:3
  • 4HAN Yingduo, XIU Lincheng, WANG Zhonghong, et al. Artificial neural networks controlled fast valving in a power generation plant [J]. IEEE Trans. Neural Networks, 1997, 8(2): 373-389.
  • 5VENAYAGAMOORTHY G K, HARLY R G,WUNSCH D C. Implementation of adaptive critic-based neurocontrollers for turbogenerators in a muhimachine power system [ J ]. IEEE Trans. Neural Networks, 2003, 14(5) : 1047 -1064.
  • 6DAI X, ZHANG K, ZHANG T, et al. ANN generalized inversion control of turbo-generator governor [ J ]. IEE Proc. Control Theory and Applications, 2004, 151 (3) : 813 -815.
  • 7VENAYAGAMOORTHY G K, HARLY R G. Two separate continually online-tranined neurocontrollers for excitation and turbine control of a turbogenerator [ J ]. IEEE Trans. Industry Applications, 2002, 38(3) : 887 -893.
  • 8LIU W, SARANGAPANI J, VENAYAGAMOORTHY G K, et al.Neural network based decentralized controls of large scale power systems [ C ]//Prodeedings of 22nd IEEE International Symposium on Intelligent Control, Part of IEEE Multi-conference on Systems and Control. Piscataway, USA : IEEE Press, 2008 : 676 -681.
  • 9PARK J, SANDBERG I W. Universal approximation using radialbasis-function networks [ J ]. Neural Computation, 1991, 3 (2) : 246 - 257.
  • 10SHIN D, KIM Y. Reconfigurable flight control system design using adaptive neural networks [ J ]. IEEE Trans. Control System Techonology, 2004, 12( 1 ) : 87 - 100.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部