期刊文献+

实现兼类样本类增量学习的一种算法 被引量:2

An incremental learning algorithm for multi-class sample
原文传递
导出
摘要 针对兼类样本,提出一种类增量学习算法.利用超球支持向量机,对每类样本求得一个能包围该类尽可能多样本的最小超球,使各类样本之间通过超球隔开.增量学习时,对新增样本以及旧样本集中的支持向量和超球附近的非支持向量进行训练,使得算法在很小的空间代价下实现兼类样本类增量学习.分类过程中,根据待分类样本到各超球球心的距离判定其所属类别.实验结果表明,该算法具有较快的训练、分类速度和较高的分类精度. To multi-class sample, an incremental learning algorithm is proposed in this paper. Hyper-sphere support vector machine is used to get the smallest hyper-sphere that contains most samples of a class, which can divide the class samples from others. In the process of class incremental learning, the new samples, the history support vectors and the history samples that near the hyper-sphere are trained. Therefore, the multi-class incremental learning can be realized in a small memory space. For the sample to be classified, the distances from it to the centre of every hypersphere are used to confirm the classes that the sample belongs to. The experimental results show that the algorithm has a higher performance on training speed, classification speed, and classification precision.
出处 《控制与决策》 EI CSCD 北大核心 2009年第1期137-140,共4页 Control and Decision
基金 国家自然科学基金项目(60603023) 国家973计划项目(2001CCA00700)
关键词 支持向量机 超球 兼类 类增量学习 Support vector machines Hyper-sphere Multi-class Class incremental learning
  • 相关文献

参考文献12

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 2Syed N, Liu H, Sung K. Incremental learning with support vector machines[C]. Proc of the Workshop on Support Vector Machines at the Int J Conf on Artifical Intelligence. Stockholm, 1999: 352-356.
  • 3Domeniconi C, Gunopulos D. Incremental support vector machine construction[C]. Proc of IEEE Int Conf on Data Mining. San Jose, 2001 : 589-592.
  • 4Cauwenberghs G, Poggio T. Incremental and decremental support vector machine [J]. Machine Learning, 2001, 44(13): 409-415.
  • 5Zhang Jinpei, Li Zhongwei, Yang Jing. A divisional incremental training algorithm of support vector machine [C]. Proc of the IEEE Int Conf on Mechatronics and Automation. Niagara Falls, 2005, 8: 853-855.
  • 6孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 7萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 8朱美琳,杨佩.基于支持向量机的多分类增量学习算法[J].计算机工程,2006,32(17):77-79. 被引量:11
  • 9Zhang Bofeng, Su Jinshu, Xu Xin. A class-incremental learning method for multi-class support vector machines in text classification[C]. Proc of the 5th Int Conf on Machine Learning and Cybernetics. Dalian, 2006: 13-16.
  • 10张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84

二级参考文献26

  • 1曾文华,马健.支持向量机增量学习的算法与应用[J].计算机集成制造系统-CIMS,2003,9(z1):144-148. 被引量:27
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 3Muller K R, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Transon Neural Networks,2001,12(2) : 181-201.
  • 4Burges C J C. A tutorial on Support Vector Machines for Pattern Recognition[J]. Knowledge Discovery and Data Mining, 1998,2(2) :121-167.
  • 5Gert C, Tomaso P. Incremental and Decremental Support Vector Machine Learning [A]. Advances in Neural Information Processing Systems (NIPS * 2000)[C]. Cambridge MA :MIT Press, 2001,13.
  • 6Schoelkopf B. The Kernel Trick for Distances [R].MSR-TR-2000-51 ,Microsoft Research, 2000.
  • 7Smola A J. Learning with Kernels[D]. Berlin:Technische Universitaet, 1998.
  • 8Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization [A]. Advancesin Kernel Methods - Support Vector Learning [C].Cambridge, MA: MIT Press ,1999 :185-208.
  • 9Bottou L, Cortes C, Denker J, et al. Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition[A]. Proc of the Int Conf on Pattern Recognition[C]. Jerusalem,1994:77-87.
  • 10Platt J, Cristianini N, Shawe-Taylor J. Large Margin DAG's for Multiclass Classification[A]. Advances in Neural Information Processing Systems 12[C]. Cambridge, MA: MIT Press, 2000: 547-553.

共引文献276

同被引文献22

  • 1孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 2王晔,黄上腾.基于支持向量机的文本兼类标注[J].计算机工程与应用,2006,42(2):182-185. 被引量:10
  • 3Yang Yi-ming. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999 ( 1 ) : 69-90.
  • 4Mecallum A, Nigam K. A Comparison of Event Models for Nai ve Bayes Text Classification[C] // AAAI Workshop on Learning for Text Categorization. Madison, 1998 : 509-516.
  • 5Han J, Kamber M. Data Mining : Concepts and Techniques[ M]. Beijing .. Higher Education Press, 2001.
  • 6Takahashi F, Abe S, Decision-Tree-Based Multiclass Support Vee tor Machines[C]//International Conference on Neural Information Processing. Singapore, 2002 :1418-1422.
  • 7Platt J, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification[C]//Advances in Neural Information Processing Systems. Cambridge, MA; MIT Press, 2000 : 547 553.
  • 8Tax D,Duin R. Uniform Object Generation for Optimizing Oneclass Classifiers[J]. Journal of Machine Learning Research, 2001 (2):155-173.
  • 9Shigeo A, Ruck T. A Fuzzy Classifier with Ellipsoidal Regions [J]. IEEE Transactions on Fuzzy Systems, 1997,5 (3) : 358-368.
  • 10Li Y. On incremental and robust subspace learning[J]. Pattern Recognition, 2004,37 (7) : 1509-1518.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部