期刊文献+

Quantum Adjoint Action for Quantum Algebra Uq(f(K,H))

Quantum Adjoint Action for Quantum Algebra Uq(f(K,H))
下载PDF
导出
摘要 The aim of this paper is to study the adjoint action for the quantum algebra Uq(f(K, H)), which is a natural generalization of quantum algebra Uq(sl2) and is regarded as a class of generalized Weyl algebra..The structure theorem of its locally finite subalgebra F(Uq(f(K, H))) is given. The aim of this paper is to study the adjoint action for the quantum algebra Uq(f(K, H)), which is a natural generalization of quantum algebra Uq(sl2) and is regarded as a class of generalized Weyl algebra..The structure theorem of its locally finite subalgebra F(Uq(f(K, H))) is given.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第1期1-8,共8页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10871227) the Science Foundation of Hebei Province (No. 2008000135).
关键词 Adjoint action Locally finite subalgebra Highest weight vector Adjoint action, Locally finite subalgebra, Highest weight vector
  • 相关文献

参考文献12

  • 1KULIS P P, RESETIHIN N J. Quantum linear problem for the sine-Gordon equation and higher representations [J]. Zap. Nauchn. Sere. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1981, 101: 101-110, 207.
  • 2SKLYANIN E K. On an algebra generated by quadratic relations [J]. Uspekhi. Mth. Nauk., 1985, 40: 214.
  • 3SMITH S P. A class of algebras similar to the enveloping algebra ofsl(2) [J]. Trans. Amer. Math. Soc., 1990, 322(1): 285-314.
  • 4BAVULA V V, JORDAN D A. Isomorphism problems and groups of automorphisms for generalized Weyl algebras [J]. Trans. Amer. Math. Soc., 2001, 353(2): 769-794.
  • 5JING Naihuan, ZHANG J. Quantum Weft algebras and deformations of U(g) [J]. Pacific J. Math., 1995, 171(2): 437-454.
  • 6CHEN Huixiang. Irreducible representations of a class of quantum doubles [J]. J. Algebra, 2000, 225(1): 391-409.
  • 7WANG Dingguo, JI Qingzhong, YANG Shilin. Finite-dimensional representations of quantum group Uq (f (K, H) ) [J]. Comm. Algebra, 2002, 30(5): 2191-2211.
  • 8KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
  • 9MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. American Mathematical Society, Providence, RI, 1993.
  • 10CATOIU S. Ideals of the enveloping Mgebra U(sl2) [J]. J. Algebra, 1998, 202(1): 142-177.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部