期刊文献+

逆境条件下植物CBL-CIPK信号途径转导的分子机制 被引量:5

The Mechanism of CBL-CIPK Signal Transduction under Stresses in Plants
下载PDF
导出
摘要 非生物逆境条件下,植物细胞中的钙离子浓度会发生变化从而导致独特的钙信号的产生,钙信号通过与各种钙离子结合蛋白作用,从而将信号继续向下游传递。CBL蛋白作为近年来刚发现的一类钙结合元件,通过与一类丝氨酸/苏氨酸蛋白激酶-CIPK相互作用而形成了一套植物钙信号传递网络,并且在盐、干旱、低钾等非生物逆境的信号传递中起着重要作用。 In plant, intracellular calcium levels altered in response to multiple abiotic stresses result in calcium signatures. Although the specific signature of the calcium transients can encode information on its own, an additional level of regulation in calcium signaling is achieved via the action of calcium-binding proteins. Calcineurin B-like proteins, as the plant calcium-binding proteins recently identified, must function by binding and regulating a group of serine-threonine protein kinases called CIPKs (CBL-interacting protein kinases) and provide a signal network to adapt various stresses. The calcium signal pathways have been well studied in plant and it has been identified that the pathways play important roles in multiple abiotic stresses, including salt, drought and low K^+.
出处 《分子植物育种》 CAS CSCD 2009年第1期143-148,共6页 Molecular Plant Breeding
基金 国家自然科学基会项目(30571472 30730077) 国家高新技术研究发展计划(2007AA10Z106) 国家林业局948引进项目(2007-4-01)资助
关键词 逆境 CBL CIPK 信号转导 Stress, Calcium, CBL, CIPK, Signal transduction
  • 相关文献

参考文献37

  • 1Albrecht V., Ritz 0., Linder S., Harter K., and Kudla J., 2001, The NAF domain defines a novel protein-protein interaction module conserved in Ca^2+regulated kinases, EMBO J., 20: 1051-1063
  • 2Batistic O., and Kudla J., 2004, Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK proteins kinase network, Planta, 219:915-924
  • 3Becker D., Hoth S., Ache P., Wenkel S., Roelfsema M.IL, MeyerhoffO., Hartung W., and Hedrich R., 2003, Regulation of the ABA-sensitive A rabidopsis potassium channel gene GORK in response to water stress, FEBS Lett., 554(1-2): 119-126
  • 4Cheong Y.H., Kim K.N., Pandey G.K., Gupta R., Grant J.J., and Luan S., 2003, CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis, Plant Cell, 15:1833-1845
  • 5Cheong Y.H., Pandey G.K., Grant J.J., Batistic O., Li L., Kim B.G., Lee S.C., Kudla J., and Luan S., 2007, Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in A rabidopsis, Plant J., 52:223-239
  • 6D'Angelo C., Weinl S., Batistic O., Pandey G.K., Cheong Y.H., Schtiltke S., Albrecht V., Ehlert B., Schulz B., Harter K., Luan S., Bock R., and Kudla J., 2006, Alternative complex formation of the Ca2+-regulated protein kinase CIPKI controls abscisic acid-dependent and independent stress re- sponses in Arabidopsis, Plant J., 48:857-872
  • 7Fuglsang A.T., Guo Y., Cuin T.A., Qiu Q., Song C., Kristiansen K.A., Bych K., Schulz A., Shabala S., Schumaker K.S., Palmgren M.P., and Zhu J.K., 2007, Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein, Plant Cell, 19: 1617-1634
  • 8Gong D., Guo Y., Schumaker K.S., and Zhu J.K., 2004, The SOS3 family of calcium sensors and SOS2 family of protein kinases in A tab idopsis, Plant Physiol., 134:919-926
  • 9Halfter U., Ishitani M., and Zhu J.K., 2000, The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3, Proc. Natl. Acad. Sci., USA., 97:3735-3740
  • 10Hosy E., Vavasseur A., Mouline IC, Dreyer I., Gaymard F., Poree F., Boucherez J., Lebaudy A., Bouchez D., Very A.A., Simonneau T., Thibaud J.B., and Sentenac H., 2003, The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration, Proc. Natl. Acad. Sci., USA., 100(9): 4976-4977

同被引文献53

  • 1武维华.植物响应低钾胁迫及钾营养高效的分子调控网络机制研究[J].中国基础科学,2007(2):18-18. 被引量:6
  • 2李玉菊,李小方.植物中解密Ca^(2+)信号转导特异性的机制[J].细胞生物学杂志,2005,27(4):414-416. 被引量:9
  • 3Girdhar K Pandey,Yong Hwa Cheongx,Beom-Gi Kim,John J Grant,Legong Li,Sheng Luan.CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis[J].Cell Research,2007,17(5):411-421. 被引量:23
  • 4刘实,赵小英,唐冬英,郭新红,刘选明.拟南芥CIPK1基因的功能初步分析[J].西北植物学报,2007,27(6):1091-1095. 被引量:8
  • 5Ranathunge K,El-kereamy A,Gidda S,et al. AMT1;1 transgenic rice plants with enhanced NH+4 permeability show superior growth and higher yield under optimal and suboptimal NH+4 conditions[J]. Journal of Experimental Botany,2014,65(4): 965-979.
  • 6Sonoda Y,Ikeda A,Saiki S,et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice[J]. Plant & Cell Physiology,2003,44(7): 726-734.
  • 7Hoque M S,Masle J,Udvardi M K,et al. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content,but impairs growth and development of plants under high ammonium nutrition[J]. Functional Plant Biology,2006,33(2): 153-163.
  • 8Marini A M,Sad S B,Vissers S,et al. A family of ammonium transporters in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology,1997,17(8): 4282-4293.
  • 9Ninnemann O,Jauniaux J C,Frommer W B. Identification of a high affinity NH+4 transporter from plants[J]. The EMBO Journal,1994,13(15): 3464-3471.
  • 10Mayer M,Schaaf G,Mouro I,et al. Different transport mechanisms in plant and human AMTRh-type ammonium transporters[J]. Journal of General Physiology,2006,127(2): 133-144.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部