期刊文献+

固定化光合细菌光生物制氢填充床产氢特性研究 被引量:6

INVESTIGATION ON HYDROGEN PRODUCTION IN A PHOTOBIOREACTOR PACKED WITH IMMOBLIZED PHOTOSYNTHETIC BACTERIA PARTICLES
下载PDF
导出
摘要 实验研究了凝胶材料制备的光合细菌包埋颗粒构成的光生物制氢填充床在连续操作条件下底物浓度、光照强度以及进口流量等参数影响下的产氢和降解有机物的性能。实验结果表明:填充床产氢速率和底物降解速率随进口葡萄糖浓度的增加而增大,且达到最佳的进口底物浓度后填充床产氢和底物降解速率呈下降趋势,表明光合细菌代谢底物为产氢提供还原力氢;光照强度低于光能饱和度时,随着光照强度的增大,产氢速率和底物降解速率呈递增趋势,光照强度超过光能饱和度则对填充床光合产氢和底物消耗产生明显抑制作用;进口流量较低时,随进口流量的增大,填充床产氢和底物降解速率明显增大,进口流量较高时,填充床产氢和底物降解速率趋于相对稳定。 Effect of substrate concentration, light intensity and influent flux on characteristics of hydrogen production and biodegradation of substrate by packed bed which filled with particles entrapped photosynthetic bacteria by sodium alginate-PVA gel was investigated in continuous cultures. It revealed that both the hydrogen producing rate and biodegradation rate increased firstly up to a maximum and then dropped off with the increase in glucose concentration, which showed that reduced hydrogen came from substrate such as glucose. Similarly, there existed corresponding saturation of light intensity to hydrogen producing and biodegradation of substrate as the rate of hydrogen production and substrate biodegradation in packed bed increased with light intensity lower than light saturation increasing, contrarily, hydrogen production and substrate biodegradation would be compressed by light intensity higher than light saturation. Meanwhile, the rise of low flux leaded to a significant enhancement of hydrogen production and biodegradation. However, the rate of hydrogen production and substrate biodegradation became steady relatively at high inlet flux.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2009年第1期150-152,共3页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.90510020 No.50576107) 教育部新世纪优秀人才支持计划(No.NCET-04-0845) 高等学校博士学科点专项科研基金(No.20050611004) 重庆市自然科学基金(No.CSTC 2006BB7225)
关键词 光合细菌 固定化细胞反应器 光生物制氢 降解 photosynthetic bacteria immobilized biohydrogen production biodegradation
  • 相关文献

参考文献5

  • 1Anastasios Melis, Matthew R Melnicki. Integrated Biological Hydrogen Production. International Journal of Hydrogen Energy, 2006, 31:1563-1573
  • 2Patrick C Hallenbecka, John R Benemann. Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy, 2002, 27:1185-1193
  • 3Wu K J, Chang J S. Batch and Continuous Fermenta- tive Production of Hydrogen with Anaerobic Sludge. Entrapped in a Composite Polymeric Matrix. Process Biochemistry, 2007, 42:279-284
  • 4廖强,巴淑丽,朱陶,王永忠.固定化细胞的制备以及性能实验研究[J].工程热物理学报,2007,28(z2):115-117. 被引量:5
  • 5张龙翔,张庭芳,李令媛.生化实验方法和技术.北京:高等教育出版社,2003.1-3.

二级参考文献4

  • 1[2]Crank J.The Mathematics of Diffusion.U.K.:Oxford University Press,1956
  • 2[3]Tacx J CJ F,Schoffeleers HM,Brands A GM.Dissolution Behavior and Solution Properties of Polyvinylalccohol as Determined by Visometry and Light Scattering in DMSO.Ethyleneglycol and Water Polymer,2000,41(3):947-957
  • 3[4]Muhr A H,John M V.Diffusion in Gel.Polymer.1982,23(7):1012-1026
  • 4赵四清.包埋法固定微生物细胞技术的新进展[J].生物技术通讯,1995,6(1):33-34. 被引量:4

共引文献5

同被引文献158

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部