期刊文献+

纵向数据混合效应模型的Bayes局部影响

Bayesian Local Influence of Mixed-Effects Model for Longitudinal Data
下载PDF
导出
摘要 基于分层先验思想,研究了适应于纵向数据的混合效应模型的Bayes局部影响,并根据纵向数据既包含个体又包含个体不同状态的特点,提出了两种便于合理分析数据的扰动方案,导出模型在上述各种扰动下效应参数的Bayes局部影响度量,最后给出实例。 Based on the hierarchical prior method, we study the Bayesian local influence of the mixed- effects model for longitudinal data. Two types of perturbation schemes are proposed based on the characteristics of longitudinal data which include both individuals and individual cases. The Bayesian local influential method and formulas of parameter estimates are provided under these perturbation schemes. An example is given for illustration.
出处 《南京气象学院学报》 CSCD 北大核心 2008年第6期883-889,共7页 Journal of Nanjing Institute of Meteorology
基金 南京信息工程大学教研基金资助
关键词 纵向数据 混合效应模型 扰动模式 Bayes局部影响 longitudinal data mixed-effects model perturbation scheme Bayesian local influence
  • 相关文献

参考文献17

  • 1Laird N M, Ware J H. Random-effects models for longitudinal data[ J ]. Biometrics, 1982,38 (4) :963-974.
  • 2Davidian M, Giltinan D M. Nonlinear models for repeated measurement data [ M ]. London:Chapman Hall, 1995.
  • 3Verbeke G, Molenberghs G. Linear mixed models for longitudinal data [ M ]. New York:Springer,2000.
  • 4Demidenko E. Mixed models : theory and applications [ M ]. Hoboken : Wiley,2004.
  • 5Chistensen R, Pearson L M. Case-deletion diagnostics for mixed models[ J ]. Technometrics, 1992,34 (1) :38-45.
  • 6石磊,向黎明,王学仁.混合线性模型效应参数的影响分析[J].数学物理学报(A辑),1996,16(3):316-323. 被引量:5
  • 7Lesaffre E, Verbeke G. Local influence in linear mixed models [ J ]. Biometrics, 1998,54 (2) :570-582.
  • 8孙海燕,吴喜之.适应于纵数据的随机效应模型中参数的局部影响诊断[J].数学理论与应用,2000,20(3):1-9. 被引量:2
  • 9Eugene Demidenko, Therese A S. Influence analysis for linear mixed-effects models [ J ]. Statistics In Medicine, 2005,24 ( 6 ) : 893 -909.
  • 10赵为华,冯予.非线性随机效应模型基于统计曲率的统计诊断[J].南京理工大学学报,2005,29(2):244-247. 被引量:1

二级参考文献34

  • 1Beckman R J, Nachtsheim C J. Diagnostics for mixed-model analysis of variance. Technometrics, 1987,29:413-426.
  • 2Fellner W H. Robust estimation of variance components. Technometrics, 1986, 28:51-60.
  • 3Robinson G K. That BLUP is a good thing: the estimation of random effects. Statistical Science, 1991,1:15-51.
  • 4Chistensen R, Pearson L M. Case-deletion diagnostics for mixed models. Technometrics, 1992,34:38-45.
  • 5Morrell C H, Pearson J D, Brant L J. Linear transformations of linear mixed-effects models. American Statistician, 1997, 51:338-343.
  • 6Hodges J S. Some algebra and geometry for hierarchical models, applied to diagnostics. J Roy Statist Soc, B, 1998, 60:497-536.
  • 7Lesatfre E, Verbeke G. Local influence in linear mixed models. Biometrics, 1998, 54:570-582.
  • 8Davidian M, Giltinan D M. Nonlinear Models for Repeated Measurement Data. London: Chapman and Hall, 1995.
  • 9Dey D K, Chen M H, Chang H. Bayesian approach for nonlinear random effects models. Biometrics, 1997,53:1239-1252.
  • 10Lee Y, Nelder N A. Hierarchical generalized linear models (with Discussion). J Roy Statist Soc, B, 1996,58:619-678.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部