期刊文献+

基于自适应分类曲线拟合的干涉多光谱图像压缩 被引量:3

Compression of Interference Multispectral Image Based on Adaptive Classification and Curve-Fitting
原文传递
导出
摘要 分析了干涉多光谱图像数据的两个特性,并提出一种基于自适应分类曲线拟合的压缩算法。首先采用均方差准则自适应地将干涉多光谱图像分为强、弱两类干涉区域,并分别构造不同的拟合函数。对强干涉区域,选择典型曲线,并采用最小二乘原理对典型曲线进行拟合,而其余曲线则根据典型曲线进行匹配预测;对弱干涉区域,则分别对所有干涉光强曲线独立进行拟合。最后将所有误差数据进行熵编码。实验结果表明,与JPEG2000相比,该算法能够减少无损压缩输出码率约0.2 bit/pixel,明显提高有损压缩的重建图像质量,降低光谱失真。 By analyzing two characteristics of an interference multispectral image data, a compression algorithm based on adaptive classification and curve-fitting is proposed. The image is partitioned adaptively into intensive interference region and weak interference region by the mean square deviation criterion. Different fitting functions are constructed for the two regions respectively. For the intensive interference region, some typical interference curves are selected to predict other curves, and they are fitted by least square method. For the weak interference region, the data of each interference curve are approximated independently. Finally all the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion, especially at high bit-rate for lossy compression.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第1期78-85,共8页 Acta Optica Sinica
基金 国家自然科学基金(60532060 60507012 60802076) 西安电子科技大学博士创新基金(创05025)资助课题
关键词 干涉成像光谱仪 干涉多光谱图像 图像压缩 分类 曲线拟合 interference spectrometer interferencel multispectral image image compression classification curvefitting
  • 相关文献

参考文献16

  • 1相里斌,赵葆常,薛鸣球.空间调制干涉成像光谱技术[J].光学学报,1998,18(1):18-22. 被引量:86
  • 2相里斌,袁艳.单边干涉图的数据处理方法研究[J].光子学报,2006,35(12):1869-1874. 被引量:37
  • 3周有喜,李云松,吴成柯.环境卫星多光谱图像压缩算法[J].光学学报,2006,26(3):336-340. 被引量:12
  • 4吴小华,李自田,张帆.干涉超光谱图像分析与近无损压缩CPLD实现[J].光子学报,2005,34(9):1346-1350. 被引量:17
  • 5Xiaolin Wu. An algorithmic study on lossless image compression [C]. Proc. of Data Compression Conference, Utah , April 1996. 150-159
  • 6Shantanu D. Rane, Guillermo Sapiro. Evaluation of JPEG LS, the new lossless and controlled-lossy still image compression standard, for compression of high-resolution elevation data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (10): 2298-2306
  • 7A. Said, W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits and System for Video Technology, 1996, 6(3): 243-249
  • 8D. Taubman. High performance scalable image compression with EBCOT[J]. IEEE Trans. on Image Proc. , 2000, 9(7): 1158- 1170
  • 9Boliek M. JPEG 2000 part Ⅰ final draft international standard (corrected and formatted). ISO/ IEC J TC1/SC29 WG1, 2000, September 25
  • 10Jiang Xiao, Chengke Wu. Interference multispectral image compression using a new JPEG2000 region-of-interest coding method[J]. Opt. Eng., 2004, 43(4): 838-842

二级参考文献67

  • 1肖江,周有喜,吴成柯,杨建峰,相里斌.大孔径静态干涉光谱仪图像压缩技术[J].光学学报,2004,24(11):1494-1498. 被引量:7
  • 2周有喜,李云松,吴成柯.环境卫星多光谱图像压缩算法[J].光学学报,2006,26(3):336-340. 被引量:12
  • 3Xu Q, Xiong Z. Layered Wyner-Ziv video coding[J]. IEEE Trans. Image Processing, 2006, 15(12):3791-3803.
  • 4Morbee M, Prades-Nebot J, Pizurica A et al.. Rate allocation algorithm for pixel-domain distributed video coding without feedback channel [C]. in Proc. IEEE Conf. on ICASSP, Honolulu, HI, 2007.
  • 5Westerlaken, Ronald P, Borchert et al. Analyzing symbol and bit plane-based LDPC in distributed video coding[C]. in Proc. IEEE Conf. on Image Processing, San Antonio, TX, USA, 2007.
  • 6Christophe E. Leger D,Mailhes C. Quality criteria benchmark for hyperspectral imagery [J]. IEEE Trans. Geoscience and Remote Sensing, 2005, 43(9):2103-2114.
  • 7Jing Huang, Rihong Zhu, Jianxin Li et al.. Hyperspectral image compression using three dimensional significance tree splitting [J]. Chin. Opt. Lett., 2007, 5(7) : 393-396.
  • 8Wyner A, Ziv J. The rate-distortion function for source coding with side information at the decoder [ J]. IEEE Trans. Information Theory, 1976, IT-22(1) : 1-10.
  • 9Girod B, Aaron A, Rane Set al.. Distributed video coding[J]. Proc. IEEE, 2005, 93(1): 71-83.
  • 10Puri R, Majumdar A, Ramchandran K. PRISM.- A video coding paradigm with motion estimation at the decoder [ J]. IEEE Trans. Image Processing, 2007, 16(10) : 2436-2448.

共引文献168

同被引文献21

  • 1许卫东,尹球,匡定波.地物光谱匹配模型比较研究[J].红外与毫米波学报,2005,24(4):296-300. 被引量:53
  • 2A. Jensen, A. I. Cour-Harbo. Ripples in Mathematics: The Discrete Wavelet Transform[M]. Springer-Verlag, 2001.
  • 3M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction; application to compressed sensing and other inverse problems[J]. IEEE J. Sel. Top. Signal Process, 2007, 1(1): 586-597.
  • 4J. Deker Jr. Hadamard Transformation Optics[M]. Academic Press, 1979.
  • 5E. Christophe, D. Leger, C. Mailhes. Quality criteria benchmark for hyperspectral imagery[J].IEEE Trans. C-eosci. Remote Sens., 2005, 43(9): 2103-2114.
  • 6B. Aiazzi, L. Alparone, S. Baronti et al.. Tradeoff between radiometric and spectral distortion in lossy compression of hyperspectral imagery[C]. SPIE, 2004, 5208:141-152.
  • 7C. Mailhes, P. Vermande, F. J. Castanie. Spectral image compression[J]. Optics (Paris), 1990, 21(3): 121-132.
  • 8C. I. Chang. An information theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image[J]. IEEE Trans. Inf. Theory, 2000, 46(5): 1927-1932.
  • 9F. A. Kruse, A. B. Lekoff, J. W. Boardman et al.. The spectral image processing system(SIPS)-interactive visualization and analysis of imaging spectrometer data[J]. Remote Sens. Environ. , 1993, 44(2 3): 145-163.
  • 10S. A. Robila. Using spectral distances for speedup in hyperspectral image processing [J].International J. Remote Sensing, 2005, 26(24) : 5629-5650.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部