期刊文献+

滤环上微局部化模的正则奇点

Microlocalizations of Modules with Regular Singularities over Filtered Rings
下载PDF
导出
摘要 滤环R上的模在微局部化下的性质是许多文献讨论的问题.Essen证明了Zariski滤环R上的模M若具有正则奇点,则它的微局部化QμS(M)作为QμS(R)-模仍具有正则奇点,但QμS(M)作为R-模是否仍具有正则奇点则不知道.对这一问题进行了讨论,并证明了若M是有正则奇点的R-模且M上的局部滤是良滤,则QμS(M)作为R-模是具正则奇点的模.在一定条件下解决了该问题. The microlocalized properties of a module over a filtered ring R are discussed by many papers in recent years.For example,Essen proved that if M is a module with regular singularities over a Zariski ring R ,then its microlocalization Q μ S(M) is a Q μ S(R) module with regular singularities.But it is unknown that if Q μ S(M) is a R module with regular singularities.In this paper the regular singularities of the microlocalization Q μ S(M) are discussed as an R module while R is a Zariski filtered ring and M is an R module with regular singularities.An answer to the problem in suitable conditions is given.The result is proved that if M is a R module with regular singularities and the localized filtation on M is a good R filtration then the microlocalization Q μ S(M) of M is a R module with regular singularities.
作者 周梦
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 1998年第1期100-103,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 正则奇点 微局部化 局部滤 filtration ring module regular singularities microlocalization localized filtration
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部