摘要
滤环R上的模在微局部化下的性质是许多文献讨论的问题.Essen证明了Zariski滤环R上的模M若具有正则奇点,则它的微局部化QμS(M)作为QμS(R)-模仍具有正则奇点,但QμS(M)作为R-模是否仍具有正则奇点则不知道.对这一问题进行了讨论,并证明了若M是有正则奇点的R-模且M上的局部滤是良滤,则QμS(M)作为R-模是具正则奇点的模.在一定条件下解决了该问题.
The microlocalized properties of a module over a filtered ring R are discussed by many papers in recent years.For example,Essen proved that if M is a module with regular singularities over a Zariski ring R ,then its microlocalization Q μ S(M) is a Q μ S(R) module with regular singularities.But it is unknown that if Q μ S(M) is a R module with regular singularities.In this paper the regular singularities of the microlocalization Q μ S(M) are discussed as an R module while R is a Zariski filtered ring and M is an R module with regular singularities.An answer to the problem in suitable conditions is given.The result is proved that if M is a R module with regular singularities and the localized filtation on M is a good R filtration then the microlocalization Q μ S(M) of M is a R module with regular singularities.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1998年第1期100-103,共4页
Journal of Beijing University of Aeronautics and Astronautics
关键词
滤
环
模
正则奇点
微局部化
局部滤
filtration
ring
module
regular singularities
microlocalization
localized filtration