期刊文献+

ICA及其在气液两相流辨识中的应用 被引量:3

ICA and Its Application in the Identification of Gas/Liquid Two-Phase Flow
下载PDF
导出
摘要 应用独立分量分析(ICA)方法研究气液两相流的辨识问题。根据基于高阶统计量的改进J-HICA求解算法,利用给定仿真信号及不同流量油、气、水单相流体响应信号,模拟两相、三相混合信源进行分离实验,验证该方法的可靠性,并对生产井实测气液两相流体多路传感器响应信号进行分离。对比及分析分离结果表明,该方法成功地从混合信号中分离出表征气、液特征的源信号,达到了辨识目的。 The independent component analysis (ICA) is applied to study the two-phase flow identification. According to the improved J - H algorithm of ICA which based on higher order statistics, the reliability of the method was conformed using given modulate signals and different fluid flow of monophase of oil, gas and water response signals to emulate tow phase and three phase mixed up signal sources. The field productive well logging gas and liquid two-phase signals which responded by mull-channel sensors were separated, compare and analysis indicate that signals which characterize the gas and liquid information respectively are successfully separated from mixed signals of well logging.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2009年第1期31-36,共6页 Journal of Jilin University:Earth Science Edition
基金 黑龙江省自然科学基金项目(E0317) 黑龙江省科技攻关项目(GZ05A102)
关键词 独立分量分析 高阶统计量 J—H算法 两相流 峭度 ICA higher order statistics improved J - H algorithm two-phase flow kurtosis
  • 相关文献

参考文献12

二级参考文献70

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2解思梅,包澄澜,郝春江.南北两极海冰的相互关系[J].科学通报,1995,40(7):632-635. 被引量:9
  • 3孙克辉 凌玉华.含水重油电介质的极化机理研究[J].中国有色金属学报,1997,7(3):90-92.
  • 4A Hyvarinen. Survey on independent component analysis[ J ]. Neural Computing Surveys, 1999,2:94 - 128.
  • 5A Hyvarinen, E Oja. Independent component analysis:Algorithm and appllcation[J]. Neural Network, 2000,13:411-430.
  • 6C Jutten, J Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuro mimetic architecture [ J ]. Signal Processing,1991,24;1 - 10.
  • 7T-W Lee. Independent component analysis: Theory and Application[M]. Dordrecht ( The Netherlands) : Kluwer Academic Publisher,1998.
  • 8Yin-ming Cheng, Lei Xu. Independent component ordering in ICA time series analysis[ J]. Neurocomputing,2001,41 : 145 - 152.
  • 9A Hyvarinen, E Oja. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997,9(7):1483 - 1492.
  • 10W B Rossow A Chedin. Rotation of EOFs by Independent component analysis: Torwards solving the mixing problem in the deeompoaition of Geophysical time series[J]. J Atmos Sci,2002.59:111 - 123.

共引文献131

同被引文献39

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部