期刊文献+

SOFM储层综合评价方法及其在延吉盆地的应用 被引量:6

Self-Organizing Feature Map(SOFM) Neural Network Method in Reservoir Quality Synthetic Evaluation and Its Application in Yanji Basin
下载PDF
导出
摘要 通过对已有储层评价方法优势与不足的分析,提出在空间数据库基础上应用自组织特征映射神经网络进行油气储层评价,并对延吉盆地大砬子组储层进行了评价。评价结果显示:Ⅰ级储集层主要发育于朝阳川凹陷中央—延D4井西缘、呈椭圆状分布,朝阳川凹陷西缘即延D6、延3之间呈月牙状分布;Ⅱ级储集层区块较大,分布集中在朝阳川凹陷周缘及帽儿山凸起,在清茶馆凹陷的东缘、南缘和德新凹陷的北缘呈不规则分布;Ⅲ级主要发育于朝阳川凹陷中央-朝阳川镇南部,清茶馆凹陷东缘,呈条带、小块状零星分布,德新凹陷大部呈不规则分布;Ⅳ级主要发育于西部隆起区、练花洞单斜一带,在茶清馆凹陷中央也有零星分布;其它地区是储层物性发育较差的Ⅴ级。 Beginning with analyzing advantage and disadvantage of the existing methods used in the reservoir quality synthetic evaluation, the authors put forward to applying SOFM (self-organizing feature map) neural network method to be used in the oil reservoir quality synthetic evaluation on spatial database and have appraised the Dalazi group reservoir of the Yanji basin using the method proposed. The results indicate that the first category reservoirs were mainly developed in the Chaoyangchuan central-depression and at the western margin of Yan- D4 well with oval-shaped distribution pattern and at the western margin of the Chaoyangchuan depression - that is , in between Yan- D6 and Yan - 3 with crescent-shaped distribution pattern; The blocks of the second category reservoirs were quite big and they are collectively distributed at the peripheral of the Chaoyangchuan-depression and the Maoershan bulge, are irregularly distributed at the eastern and southern margins of the Qingchaguan depression and at the northern margin of the Dexin depression; The third category reservoirs were mainly developed in the Chaoyangchuan central-depression and to the south of the Chaoyangchuan Town, and they are also distributed at the eastern margin of the Qingchaguan depression as small, sporadic strips and patches; and also irregularly distributed in the Dexin depression; The fourth category reservoirs are mainly developed in the western uplift and the Lianhuadong ramp area, also are sporadically distributed in the center of the Qingchaguan depression; Areas belong to the fifth category of poor reservoirs.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2009年第1期168-174,共7页 Journal of Jilin University:Earth Science Edition
基金 国家油气重大专项(XQ-2004-07)
关键词 自组织特征映射神经网络 储层 延吉盆地 self-organizing feature map neural network reservoir Yanji basin
  • 相关文献

参考文献11

二级参考文献31

  • 1施冬,陈军,朱庆.基于GIS的油气储层综合评价方法研究[J].武汉大学学报(信息科学版),2004,29(7):592-596. 被引量:6
  • 2张之一,高品文.延吉盆地构造地质特征及其含油性[J].石油与天然气地质,1989,10(4):398-405. 被引量:2
  • 3周竹生,周熙襄.一种用于地震道自动编辑的人工神经网络方法[J].石油地球物理勘探,1994,29(2):147-155. 被引量:5
  • 4长春地质学院.吉林省延吉盆地东部坳陷地震详查报告[M].,1992..
  • 5长春地质学院.吉林省延吉盆地朝阳川坳陷地震详查报告[M].,1993..
  • 6[5]Yero-Batista M,Gomez-Herrera,Linares-Cala E,et al.Valdes-Pino INFOPET.GIS Project:Representation and Geosite Data for Petroleum Exploration[J].Journal of Canadian Petroleum Technology,2002,1(2):15-17
  • 7[6]Yoon J P.A Framework for KnowlEdge Discovery and Evolution in Databases[J].IEEE Trans on Knowledge and Data Engineering,1993,5(6):973-979
  • 8马贡LB 道WC 张刚 蔡希源 高泳生 译.含油气系统--从源岩到圈闭[M].北京:石油工业出版社,1998..
  • 9Magoon L B. The petroleum system: from source to trap[J]. AAPG, Memoir, 1994, 60: 3 - 24.
  • 10边馥苓,朱国宾,余洁,等.地理信息系统原理和方法.北京:测绘出版社,1996

共引文献59

同被引文献69

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部