期刊文献+

基于粗糙集定权法的雷达信号模糊模式识别 被引量:1

FUZZY PATTERN RECOGNITION FOR RADAR SIGNALS BASED ON ROUGH SET FIXED WEIGHT
下载PDF
导出
摘要 信号识别是侦察系统信号处理的目的,是整个雷达对抗信号处理中关键性的一个环节。为解决雷达信号的智能识别问题,研究了将粗糙集和模糊模式识别法紧密结合的雷达信号识别模型,即先用粗糙集属性重要性定义了雷达信号各特征参数的识别权重,再结合模糊模式识别的方法对雷达信号进行匹配识别。该方法既充分运用了原始数据又体现出雷达信号自身的特点,通过实例验证并分析了此法的实用性和有效性。 The purpose of reconnaissance system' s information processing is signal recognition, which is also a key step in whole process of radar countermeasure information processing. In order to solve the problem of radar signal' s intelligent recognition, a radar signal recognition method which combines rough set closely with fuzzy pattern recognition is studied. Firstly, the recognition weight of each feature parameters in radar signal is defined with attribute importance of rough set theory, then radar signals are matching recognised in combination with the method of fuzzy pattern recognition. This method makes full use of the original data as welt as embodies the signal' s characteristic itself. The simulation experiment and its results validate and show that the method is applicable and effective.
作者 陈婷 罗景青
出处 《计算机应用与软件》 CSCD 2009年第1期25-27,共3页 Computer Applications and Software
基金 国家863-707课题(2005AA775020)。
关键词 粗糙集 权值 特征参数 隶属度 Rough set Weight Feature parameter Grade of membership
  • 相关文献

参考文献5

  • 1熊萍,程华斌,吴晓平.基于粗糙集理论的一种综合定权法[J].海军工程大学学报,2003,15(1):53-56. 被引量:27
  • 2Pawlak Z. Rough Set Theory and Its Application to Data Analysis[ J ]. International Journal of Cybernetics and Systems, 1998 (29) :65 -69.
  • 3Walczak B, MassartD L. Rough sets theory [ J ]. Chemometrics and Intelligent Laboratory Systems, 1999,47 ( 1 ) : 1 - 16.
  • 4周平,丁进良,岳恒,柴天佑.基于相似粗糙集的案例特征权值确定新方法[J].信息与控制,2006,35(3):329-334. 被引量:15
  • 5Park C S, Han I. A Case-based Reasoning with The Feature Weights Derived by Analytic Hierarchy Process for Bankruptcy Prediction [ J ]. Expert Systems with Applications ,2002,23 ( 3 ) :255 - 264.

二级参考文献14

  • 1曾黄麟.粗集理论及应用[M].重庆大学出版社,1998..
  • 2McSherry D. The inseparability problem in interactive case-based reasoning[J]. Knowledge-Based Systems, 2002, 15 (5 - 6) :293-300.
  • 3Wiratunga N, Craw S, Taylor B, et al, Case-based reasoning for matching SmartHouse technogy to people's needs[J].Knowledge-Based Systems, 2004, 17(2 -4) : 139-146.
  • 4Park C S, Han I. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction[J]. Expert Systems with Applications, 2002, 23 (3): 255 -264.
  • 5Shin K S, Han I G. Case-based reasoning supported by genetic algorithms for corporate bond rating [J]. Expert Systems with Applications, 1999, 16 ( 2 ) : 85-95.
  • 6Walczak B, Massart D L, Rough sets theory[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 47( 1 ) : 1-16.
  • 7Tay F E H, Shen L X, Fault diagnosis based on rough set theory[J]. Engineering Applications of Artificial Intelligence, 2003,16(1) : 39-43.
  • 8Nguyen S H, Nguyen S H. Discretization methods with backtracking[A].Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing[C]. Heidelberg, Germany: Springer-Verlag, 1997. 201-205.
  • 9梁杰,侯志伟.AHP法专家调查法与神经网络相结合的综合定权方法[J].系统工程理论与实践,2001,21(3):59-63. 被引量:69
  • 10苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139

共引文献39

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部