期刊文献+

一种结合数据融合与树状小波的鲁棒数字水印算法

A ROBUST DIGITAL WATERMARKING ALGORITHM COMBINING DATA FUSION AND TREE-STRUCTURED WAVELET
下载PDF
导出
摘要 利用树状小波分解结合人类视觉系统(HVS)的特性,提出一种基于数据融合的鲁棒性数字水印算法,向载体图像中自适应的嵌入多个数字水印副本;在提取水印时,在每个块中使用独立分量分析ICA的方法提取水印,并对提取出的多个水印副本图像进行融合操作,以提高水印的鲁棒性。仿真试验表明了该方法的有效性,嵌入的水印具有较高的透明性,同时对常见图像处理攻击有很强的鲁棒性。 By the use of tree-structured wavelet decomposition and in unification with the character of human visual system ( HVS), a robust digital watermarking algorithm based on data fusion was proposed in this paper. Multiple copies of digital watermarking were adaptively embedded into the carrier image, and then ICA method was used in each block to extract these copies when picking up the watermarking. These extracted copies were fused by PCA (principal component analysis) image fusion algorithm so as to improve the robustness of the proposed algorithm. Simulated experimental results show that this scheme is effective, and achieves higher transparency in the embedded watermarking and has strong robustness to common image processing attacks.
出处 《计算机应用与软件》 CSCD 2009年第1期28-31,共4页 Computer Applications and Software
基金 国家自然科学基金(60373062 60573045) 湖南省教育厅青年项目(04B016)资助
关键词 数字水印 树状小波分解 独立分量分析 数据融合 Digital watermarking Tree-structured wavelet decomposition Individual component analysis (ICA) Data fusion
  • 相关文献

参考文献11

  • 1Peter H, Oscar C. A Novel Blind Muhiple Watermarking Technique for Images[ J]. IEEE Trans. on Circuits and Systems for Video Technology,2003,13 (8) :813 -830.
  • 2何柯峰,高隽,胡良梅,陆璐.一种基于主分量分析的融合识别方法[J].仪器仪表学报,2004,25(z3):440-442. 被引量:5
  • 3Chang T, Kou J. Texture Analysis and Classification with Tree-structured Wavelet Transform [ J ]. IEEE Trans on Image Processing, 1993,2 (4) :429-441.
  • 4Kuei Ann Wen, et al. The Transform Image Codec Based on Fuzzy Control and Human Visual System [ J ~. IEEE Trans on Fuzzy Systems, 1995,3 ( 3 ) :253 - 259.
  • 5Juliana F, Mark H. Muhiscale Color lnvariants Based on the Human Visual System[J] IEEE Trans on Image Processing,2001,10( 11 ) : 1630 - 1638.
  • 6Mark D. Algorithms for Nonnegative Independent Component Analysis [ J ]. IEEE Trans on Neural Networks,2003,14 ( 3 ) :534 - 543.
  • 7Amari S, Cichocki A. Adaptive Blind Signal Processing. Neural Network Approaches[ C ], Proe. 1EEE, 1998,86(10) :2026 - 2048.
  • 8Zhijun Wang,et al. A Comparative Analysis of Image Fusion Methods [ J ]. IEEE Trans on GeoscienCe and Remote Sensing, 2005,43 (6) : 1391 - 1402.
  • 9Hui Kong, et al. Generalized 2D Principal Component Analysis [ A ]. IEEE Intl. Conf. on Neural Networks,2005 : 108-113.
  • 10Tung Shou Chen, et al. A Combined K-means and Hierarchical Clustering Method for Improving the Clustering Efficiency of Microarray [ A ]. IEEE Intl. Conf. on Intelligent Signal Processing and Communication Systems,2005:405 -408.

二级参考文献8

  • 1郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 2[3]焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1996.
  • 3[3]Hu Liangmei, Gao Jun, Wang Andong, Hu Yong. A neural network shape recognition system based on D-S theory 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, October 12- 15,2003,524~528.
  • 4[5]Lawrence A. Klein. Sensor and data fusion concepts and applications. SPIE Optical Engineering Press, 1999.
  • 5[7]Thierry Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. , 2000,10(2) :131~150.
  • 6[12]Yong Hu, Jun Gao, Liang-Mei Hu, Huo-Ming Dong.A new method of determing the basic belief assignment in D-S evidence theory. The Second International Conference on Machine Learning and Cybernetics (ICMLC2003), Xi'an, China, Nov. 2003,3208~3212.
  • 7尹康,向辉,石教英.多媒体数据数字水印系统及其攻击分析[J].计算机科学,1999,26(10):44-48. 被引量:8
  • 8董火明,高隽,胡良梅,董文雯.基于主分量分析的形状特征提取及识别研究[J].合肥工业大学学报(自然科学版),2003,26(2):176-179. 被引量:25

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部