期刊文献+

基于优化的支持向量机的机械设备多故障诊断模型 被引量:2

MECHANICAL EQUIPMENT FAULT DETECTION MODEL BASED ON GA OPTIMIZATION AND SVM
下载PDF
导出
摘要 提出了一种基于遗传算法优化支持向量机的故障诊断模型。它利用遗传算法对支持向量机同时对传统的时域特征参量子集和核参数同时优化,以达到选择最优的设备故障主导特征参数组合的目的,实现对机器不同类型故障的识别。对齿轮故障诊断的结果表明它有效提高了多分类支持向量机的故障分类准确性。 A new classification model based on genetic programming ( GA ) and support vector machine ( SVM ) for machine fault diagnosis is proposed. The model adopts the hybrid GA-SVM strategy which simultaneously performs the optimization of conventional time domain fea- tures parameters subset and core parameters for achieving the goal of selecting the optimal feature parameters combination related to fault of mechanical equipment, and realizing the recognition of different kinds of faults of machines. Experiments of gears fault detection shows the classification ability of multi-class support vector machine is improved after feature extraction and selection.
出处 《计算机应用与软件》 CSCD 2009年第1期62-63,共2页 Computer Applications and Software
基金 中国科学院创新基金资助项目(200417009)
关键词 支持向量机 遗传算法 特征选择 故障诊断 Support vector machine Genetic algorithm Feature selection Fault detection
  • 相关文献

参考文献6

二级参考文献13

  • 1徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 2孙瑞祥.[D].西安:西安交通大学机械工程学院,1999.
  • 3Chapelle O, Vapnik V, Bousquet O, et al. Choosing muhiple parameters for support vector machines [J]. Machine Learning, 2002,46:131-159
  • 4Keerthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Trans. On Neural Networks,2002, 13 (5): 1225-1229
  • 5VapnikV著 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6KOHAVI R, JOHN G. Wrappers for Feature Subset Selection[J]. Artificial Intelligence, 1997(12): 273-324.
  • 7JAIN A, ZONGKER D. Feature selection: Evaluation,application, and small sample performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997,19(2): 153-158,
  • 8BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//The 5th Annual ACM Workshop on COLT. Pittsburgh: ACM Press, 1992:144-152.
  • 9CORTES C, VAPNIK V N. Support vector networks[J].Machine Learning, 1995, 20 (3): 273-297.
  • 10VAPNIK V N. Statistical Learning Theory[M]. New York:Wiley, 1998.

共引文献2324

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部