期刊文献+

AdaBoost集成神经网络在冲击地压预报中的应用 被引量:16

New Rock Burst Prediction Modeling Based on Ensemble Neural Network
下载PDF
导出
摘要 为提高单一BP神经网络预测精度,利用AdaBoost.R2集成学习算法,将单一BP(Back-Propagation)神经网络集成,并针对AdaBoost.R2集成BP网络的特点,提出了一种新的模型更新方法,在有效地实现模型更新的同时克服了传统更新方法的不足。将该新方法应用到抚顺老虎台矿冲击地压预报中,对冲击地压发生的主要因素进行了分析并将其作为模型的输入,使用AdaBoost.R2集成BP网络作为核心智能算法,建立了冲击地压预报模型,取得了较好的预测效果。 Aiming at the disadvantages of single BP net work, presented by using AdaBoost. R2 for improving the prediction an ensemble BP (Back- accuracy of single BP net work. A new updating method is proposed for the characters of ensemble BP net work based on AdaBoost. R2. The new method can update the model effectively and overcome the disadvantage of traditional updating methods. The new methods are used to predict the rock burst in Fushun Laohutai mine. The main influence factors for rock burst are analyzing detailed and used as the inputs of prediction model. The ensemble BP net work based on AdaBoost. R2 is used as intelligent algorithm. The prediction model for rock burst predicting has a good prediction accuracy.
作者 孙凤琪
出处 《吉林大学学报(信息科学版)》 CAS 2009年第1期79-84,共6页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划基金资助项目(20040803)
关键词 冲击地压 神经网络 ADABOOST 预测模型 模型更新 rock burst neural network AdaBoost prediction model model updating
  • 相关文献

参考文献9

  • 1DIENERICH T G. Machine Learning Research Four Current Directions [J]. AI Magazine, 1997, 18 (4) : 97-136.
  • 2SCHAPIRE R E. The Strength of Weak Leamability [J]. Machine Learning, 1990, 5 (2) : 197-227.
  • 3FREUND Y. Boosting a Weak Algorithm by Majority [J]. Information and Computation, 1995, 121 (2) : 256-285.
  • 4FREUND Y, SCHAPIRE R. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting [ J ]. Journal of Computer and System Sciences, 1997, 55 (1) : 119-139.
  • 5BREIMAN L. Prediction Games and Arcing Algorithms [J]. Neural Computation, 1997, 11 (7) : 1493-1517.
  • 6DRUCKER H. Improving Regressors Using Boosting Techniques [ C ] // Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco: [s. n. ], 1997: 107-115.
  • 7TIAN Hui-xin, MAO Zhi-zhong, WANG Yan. Hybrid Modeling of Molten Steel Temperature Prediction in LF [ J]. ISIJ International, 2008, 48 (1) : 58-62.
  • 8陈国祥,窦林名,曹安业,李志华.电磁辐射法评定冲击矿压危险等级及应用[J].煤炭学报,2008,33(8):866-870. 被引量:34
  • 9姜永东,鲜学福,尹光志.采掘工作面发生冲击地压的尖点突变模型研究[J].中国矿业,2007,16(12):65-67. 被引量:4

二级参考文献10

共引文献36

同被引文献145

引证文献16

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部