期刊文献+

集值映射的极小极大定理 被引量:1

MINIMAX THEOREM FOR SET-VALUED MAPPING
下载PDF
导出
摘要 本文利用一类非线性标量化函数的性质证明了关于集值映射的极小极大定理,并给出具体例子验证了定理的结论. In this paper, by using a kind of nonlinear scalarization functional, two types of minimax theorems for set-valued mappings are established. Some examples are given to illustrate the results.
出处 《经济数学》 2008年第3期325-330,共6页 Journal of Quantitative Economics
基金 国家自然科学基金资助项目(No.60574073) 重庆市科委自然科学基金计划资助项目(CSTC 2007BB6117)
关键词 非线性标量化函数 极小极大定理 集值映射 Nonlinear sealarization funcational, minimax theorem, set-values mapping
  • 相关文献

参考文献14

  • 1Ferro,F.A minimax theorem for vector-valued functions[Jl. J. Optim. Theory Appl., 1989,60:19 - 31.
  • 2Ferro, F. Minimax type theorems for n-valued functions[J].Ann. Mat. Pura Appl., 1983,132:113 - 130.
  • 3Ferro, F. A minimax theorem for vector-valued function[J], J. Optim. Theory APPL., 1991,68:35- 48.
  • 4Nieuwenhuis, J.W. Some minimax theorems in vector- valued functions[ J ]. J. Optim. Theory Appl., 1983,40:463 - 475.
  • 5Shi, D. S., and Lin, C. Minimax theorems and cone saddle points of unifomdy same-order vector-valued functions[J]. J. Optim. Theory Appl. , 1995,84:575 - 587.
  • 6Tanaka, T. Some minimax problems of vector-valued functions[J]. J. Optim. Theory Appl., 1988,59:171 - 176.
  • 7Tanaka, T. Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued funtions[J]. J. Optim. Theory Appl., 1994,81 : 355 - 357.
  • 8Li, S. J., Chen, G.Y. and Lee, G. M. Minimax theorem for set-velued mappings [ J ]. J. Opt im. Theory Appl., 2000, 106:183 - 200.
  • 9Li, S. J., Chen, G.Y. Teo, K. L. and Yang, X. Q. Generalized minimax inequalities for set-valued mappings[ J]. J. Math. Anal. Appl., 2003,281 : 707 - 723.
  • 10Gerstewitz, C., Iwanow, E. Dualitat fur nichtkonvexe vektor optimierungs probleme[J]. Wiss. Z. Tech. Hochschule Ilmenau, 1985,31:61 - 81.

同被引文献12

  • 1Neumann J V. Theorie der gesellschaftspiele[J]. Math Ann, 1928, 100:295 - 320.
  • 2Fan K. Fixed-point and minimax theorems in locally convex topological linear spaces [J ]. Proc Nat Acad Sci, 1952, 38: 121-126.
  • 3Ha C W. Minimax and fixed point theorems[J]. Math Ann, 1980, 248: 73- 77.
  • 4Ferro F. A minimax theorem for vector-valued functions [J]. JOptimTheoryAppl, 1989, 60: 19-31.
  • 5Ferro F. A minimax theorem for vector-valued function [J]. J Optim Theory Appl, 1991, 68:35 -48.
  • 6Nieuwenhuis J W. Some minimax theorems in vector-valued functions[J]. J Optim Theory Appl, 1983, 40:463 - 475.
  • 7Tanaka T. Some minimax problems of vector-valued functions[J]. J Optim Theory Appl, 1988, 59:171 - 176.
  • 8Li S J, Chen G Y, Lee G M. Minimax theorems for setvalued mappings[J]. J Optim Theory Appl, 2000, 106: 183 - 200.
  • 9Li S J, Chen G Y, Teo K L, et al. Generalized minimax inequalities for set-valued mappings[J]. J Math Anal Appl, 2003, 281:707 - 723.
  • 10Aubin J P, Ekeland I. Applied nonlinear analysis[M]. New York: John Wiley and Sons, 1984.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部