期刊文献+

仿sober与超sober拓扑空间

On pseudo-sober topological spaces and ultra-sober topological spaces
下载PDF
导出
摘要 对拓扑空间的sober分离性细致分析后引入类似于sober性的另外两种分离性:仿sober和超sober分离性;讨论了诸分离性的相关性质和相互关系,证明了非T1的仿sober空间一定是连通的、可分的sober空间;还探讨了dom a in上Scott拓扑与仿sober、超sober分离性的关系,证明了仿(超)sober偏序集均为代数dom a in. Soberity is a separation property of topological spaces. In this paper, two concepts of soberlike separations: pseudo-sober separation and ultra-sober separation are introduced and investigated. Some properties and relations of them are drawn. It is proved that a non-T1 pseudo-sober topological space must be sober, separable and connected. The relationships of domains in the Scott topology and pseudo-(uhra-) sober spaces are also explored. It is proved that a pseudo-(uhra-) sober poser is an algebraic domain.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第4期1-3,15,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10371106 60774073)
关键词 仿sober拓扑 超sober拓扑 特殊化序 DOMAIN SCOTT拓扑 pseudo-sober space ultra-sober space specialization order domain Scott topology
  • 相关文献

参考文献7

  • 1GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains [M]. Cambridge: Cambridge Univ Press, 2003: 1-259.
  • 2LAWSON J D, XU Luo-shan. Posets having continuous intervals [J]. Theor Comput Sci, 2004, 316: 89-103.
  • 3XU Luo-shan. Continuous of posets via Scott topology and sobrification[J].Topology & Appl, 2006, 153: 1886-1894.
  • 4徐罗山.相容L-Domain及其相关范畴性质[J].扬州大学学报(自然科学版),2002,5(1):1-7. 被引量:17
  • 5LAWSON J D. Encounters between topology and domain theory[C]// KEIMEL K, et al. Domains and Processes. Amsterdam; Kluwer Acad Pub, 2001: 1-28.
  • 6徐罗山.拓扑研究的分解方法[J].扬州师院学报(自然科学版),1996,16(1):1-8. 被引量:2
  • 7田晓明,王戈平.强 Sober 空间与一个范畴等价定理[J].数学杂志,1993,13(2):169-174. 被引量:2

二级参考文献8

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部