摘要
证明了如下结果:1设R为左极小Abel环,e2=e∈R满足ReR=R,则角环eRe也是左极小Abel环;2设I是R的不含幂等元的理想,且R/I是左极小Abel环,则R为左极小Abel环;3 R为左极小Abel环投射单左R-模的零化子是极大左理想.
The following results are proven: ① Let R be a left min-Abel ring and e^2= e ∈ R satisfy ReR=R, then the corner ring ere is left min-Abel ring. ② Let I be an ideal of R such that I contain no idempotents of R and R/I is left rain-Abel ring, then R is let min-Abel ring. ③ R is left rain-Abel ring if and only if the annihilator of every projective simple left R-module is maximal left ideal of R.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
2008年第4期4-6,共3页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(10771182,10771183)
关键词
左极小元
左极小Abel环
左R-模
强左本原理想
left minimal elements
left min-Abel rings
left R-modules
strongly left primitive ideals