期刊文献+

左极小Abel环 被引量:2

Left min-Abel rings
下载PDF
导出
摘要 证明了如下结果:1设R为左极小Abel环,e2=e∈R满足ReR=R,则角环eRe也是左极小Abel环;2设I是R的不含幂等元的理想,且R/I是左极小Abel环,则R为左极小Abel环;3 R为左极小Abel环投射单左R-模的零化子是极大左理想. The following results are proven: ① Let R be a left min-Abel ring and e^2= e ∈ R satisfy ReR=R, then the corner ring ere is left min-Abel ring. ② Let I be an ideal of R such that I contain no idempotents of R and R/I is left rain-Abel ring, then R is let min-Abel ring. ③ R is left rain-Abel ring if and only if the annihilator of every projective simple left R-module is maximal left ideal of R.
作者 张健 魏俊潮
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第4期4-6,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182,10771183)
关键词 左极小元 左极小Abel环 左R-模 强左本原理想 left minimal elements left min-Abel rings left R-modules strongly left primitive ideals
  • 相关文献

参考文献2

二级参考文献13

  • 1魏俊潮.直接有限环[J].扬州大学学报(自然科学版),2005,8(2):1-3. 被引量:8
  • 2Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 3Nicholson, W. K., "Watters, J. F.: Rings with projective socle. Proc. Amer. Math. Soc., 102, 443-450(1988).
  • 4Nicholson, W. K., Yousif, M. F.: Minijective rings. J. Algebra., 187, 548-578 (1997).
  • 5Camillo, V.: Commutative rings whose principal ideals are annihilators. Portugal Math., 46, 33-37 (1989).
  • 6Xue, W. M.: Characterization of rings using direct projective modules and direct injective modules. J. Pure App. Alg, 87, 99-104 (1993).
  • 7Parmenter, M. M., Stewart, P. N.: Excellent extensions. Comm Alg., 16(4), 703-713 (1988).
  • 8Quinn, D.: Group graded rings and duality. Trans Amer Math Soc., 292, 154-167 (1985).
  • 9Nicholson, W. K., Yousif. M. F.: Principally injective rings. J. Algebra., 174, 77-93 (1995).
  • 10Ware, R. P.: Endomorphism rings of projective modules. Trans. Amer. Math. Soc., 155, 233-256 (1971).

共引文献12

同被引文献12

  • 1Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 2魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 3KIM J Y. Certain rings whose simple singular modules are GP-injective [J]. Proc Japan Acad, 2005, 81(2): 125-128.
  • 4HUN C, JANG S H, KIM C O, et al. Rings whose maximal one-sided ideals are two-sided [J]. Bull Korean Math Soc, 2002,39(3): 411-422.
  • 5CHEN Jian-long, ZHOU Yi-qiang. Morphic rings as trivial exetensions [J]. Glasgow Math J, 2005, 47(4):139- 148.
  • 6ERLICH G. Units and one-sided units in regular rings [J]. Trans Amer Math, 1976,216(1): 81-90.
  • 7CHEN Wei xing. On semiabelian H-regular rings [J]. Intern J Math Sci, 2007, 23 (2) : 1-10.
  • 8VARADARAJAN K. Hopfian and co-Hopfian objects [J]. Publ Math, 1992, 36(3) : 293-317.
  • 9WEI Jun ehao. On simple singular YJ-injective modules [J]. Southeast Asian Bull Math, 2007, 31(4).. 1009- 1018.
  • 10WEI Jun-chao. Certain rings whose simple singular modules are nil-injective [J]. Turk Math, 2008, 32(4):393- 408.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部