期刊文献+

常利率下漂移布朗运动的分红问题(英文)

Dividend Problem in Brownian Motion with Drift by the Inclusion of Constant Interest
下载PDF
导出
摘要 假设公司的收入过程是一个漂移布朗运动,除此,公司还赚取利息收入.按照门槛策略,红利被分到股东手中:当资本余额低于某个固定水平时,没有红利付出;当资本余额高于这个水平时,红利以一个常数率(低于保费率)连续付出.我们取得期望折扣分红满足的一些积分-微分方程,进一步得到了它的详细表达. The income process of a company is modeled by a Brownian motion with drift, and in additions the surplus earns investment income in constant rate. Dividends are paid to the shareholders according to a threshold strategy: whenever the (modified) surplus is below some level, no dividends are paid; whenever the modified surplus is above the level, dividends are paid continuously with a constant rate (less than the premium rate). We obtain that the expected discounted dividends satisfies some integro-differential equations, further derive its explicit expressions.
作者 孟辉 张春生
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期95-98,共4页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by the National Natural Science Foundation of China (10571092,10571132)
关键词 布朗运动 门槛策略 分红 合流超几何方程 Brownian motion Threshold strategy dividend confluent hypergeometric equation
  • 相关文献

参考文献7

  • 1Gerber H U, Shiu E S W. Optimal dividends: Analysis with Brownian motion[J]. North American Actuarial Journal, 2004, 8(1): 1--20.
  • 2Gerber H U, Shiu E S W. On optimal dividends : from reflection to refraction[J]. Journal of Computational and Applied Mathematics, 2006, 186(1): 4--22.
  • 3Cai J, Gerber H U, Yang H L. Optimal dividends in an Ornstein-Uhlenbeek type model with credit and debit interest[J].North American Actuarial Tournal, 2006, 10(2):94--108.
  • 4Paulsen J, Gjessing H K. Optimal choice of dividend barrier for risk process with stochastic return on investment[J].Insurance: Mathematics and Economics, 1997, 20: 215--223.
  • 5Cai J, Yang H L. Ruin in the perturbed compound Poisson risk process under interest force[J]. Advances in Applied Probability, 2005, 37: 819--835.
  • 6Slater L J. Confluent Hypergeometrie Funetions[M]. Cambridge: Cambridge University Press, 1960.
  • 7Abramowitz M, Irene A S. Handbook of Mathematical Functions : with Formulas, Graphs, and Mathematical Table[M]. Washington: US Government Printing Office, 1964.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部