摘要
假设公司的收入过程是一个漂移布朗运动,除此,公司还赚取利息收入.按照门槛策略,红利被分到股东手中:当资本余额低于某个固定水平时,没有红利付出;当资本余额高于这个水平时,红利以一个常数率(低于保费率)连续付出.我们取得期望折扣分红满足的一些积分-微分方程,进一步得到了它的详细表达.
The income process of a company is modeled by a Brownian motion with drift, and in additions the surplus earns investment income in constant rate. Dividends are paid to the shareholders according to a threshold strategy: whenever the (modified) surplus is below some level, no dividends are paid; whenever the modified surplus is above the level, dividends are paid continuously with a constant rate (less than the premium rate). We obtain that the expected discounted dividends satisfies some integro-differential equations, further derive its explicit expressions.
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期95-98,共4页
Acta Scientiarum Naturalium Universitatis Nankaiensis
基金
Supported by the National Natural Science Foundation of China (10571092,10571132)
关键词
布朗运动
门槛策略
分红
合流超几何方程
Brownian motion
Threshold strategy
dividend
confluent hypergeometric equation