期刊文献+

Ti,Na与O2反应机理的理论研究

Theoretical Study of Reaction Mechanism of Ti,Na with O_2
下载PDF
导出
摘要 基于MP2/6-311+G(d)水平,分别对过渡金属Ti和碱金属Na与O2的反应机理进行了研究.比较了Ti和Na分别以垂直O—O键和沿着O—O键的方向逼近O2,以及中性体系Ti/Na+O2和带1个负电荷的体系(Ti/Na+O2)-的情况.详细分析了不同反应路径的结合能和电荷变化的曲线,预测了最佳反应方式.结果表明,垂直接近方式要比水平接近方式更具有优势;体系带一个负电荷(Ti/Na+O2)-有利于金属与O2的结合.同时,计算结果表明在Ti+O2和(Ti+O2)-体系中Ti容易与单态的O2结合;在中性体系中Na也容易与单态O2结合,而在(Na+O2)-体系中Na与三态O2的结合更稳定.在CCSD(T)/6-311++G(3df)//MP2/6-311+G(d)水平下,计算了Ti+O2和(Ti+O2)-的反应势能面. The reaction mechanisms of Ti,Na with O2 were investigated at the MP2/6-311+G(d)level.Ti and Na atom were assumed to approach O2 in the manner of horizontally or vertically with respect to the O—O bond,respectively.Both neutral Ti/Na+O2 and anionic(Ti/Na+O2)-systems were considered.The binding energy and the charge curves for each reaction pathway were analyzed in detail,to validate the optimal reaction mode.The reaction of metal atom(Ti and Na)with O2 is easier in negatively charged system(Ti/Na+O2)-than the neutral Ti/Na+O2,and the vertical pathway is more favorable than the horizontal.Meanwhile,the calculated results show that Ti atom prefers to react with the singlet O2 in both neutral and negatively charged systems.Na is easy to react with the singlet O2 in the neutral system,but with triplet O2 in negatively charged system.The potential energy surface of Ti with O2 reaction was also calculated at CCSD(T)/6-311++G(3df)//MP2/6-311+G(d)for Ti+O2 and(Ti+O2)-systems.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2008年第12期2440-2447,共8页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20773047,20473030)资助
关键词 TI NA O2 反应机理 势能面 第一性原理计算 Ti Na O2 Reaction mechanism Potential energy profile First-principle calculation
  • 相关文献

参考文献23

  • 1Fujishima A. , Honda K.. Nature[ J], 1972, 238 : 37-38
  • 2Umebayashi T. , Yamaki T. S. , Tanaka S. , et al.. Chem. Lett. [J] , 2003, 32:330-331
  • 3KhanS. U. M., Al-Shahry M., lngler Jr. W. B., etal.. Science[J], 2002, 297:2243-2245
  • 4Linsebigler A. L., Lu G. Q., Yates J. T., et al.. Chem. Rev. [J], 1995, 95:735-758
  • 5Yamashita H. , Harada M. , Misaka J. , et al.. J. Photochem. Photobiol. A: Chem. [J] , 2002, 148:257-261
  • 6Asahi R., Morikawa T. , Ohwaki T. , et al.. Science[J], 2001,293:269-271
  • 7Wang D. F., ZouZ. H., YeJ. H.. Chem. Phys. Lett.[J], 2005, 411: 285-290
  • 8Teruhisa O. , Toshiki T. , Yousuke N. , et al.. Applied Catalysis A[J] , 2005, 288:74-79
  • 9Frank S. N. , Bard A. J.. J. Am. Chem. Soc. [J], 1977, 99:303-305
  • 10Angela G. R. , Gesar P. , Nevenka A. , et al.. J. Photochem. Photobiol. A: Chem. [J], 2001, 139:233-241

二级参考文献10

  • 1Diebold U.. Surf. Sci. [J], 2003, 48:53-229.
  • 2Schaub R. , Thostrup P. , Lopez N. , et al.. Phys. Rev. Lett. [J], 2001,87:226104.
  • 3Jug K. , Nair N. N. , Bredow T.. Surf. Sci. [J], 2005, 590:9-19.
  • 4Lindan P. J. D., Zhang C. J.. Phys. Rev. B[J], 2005, 72:075439-075442.
  • 5Lewis J. P., Glaesemann K. R., Voth G. A. , et al.. Phys. Rev. B[J], 2001,64:195103-195112.
  • 6Wang H., Lewis J. P.. J. Phys. Condens Matter[J], 2005, 17:209-213.
  • 7Ramamoorthy M. , Vanderbih D. , King-Smith R. D.. Phys. Rev. B[J], 1994, 49:16721-16727.
  • 8Bates S. P., Kresse G. , Gillan M. J.. Surf. Sci. [J], 1997, 385:386-394.
  • 9Lazzeri M. , Vittadini A. , Selloni A.. Phys. Rev. B[J], 2001,63:155409-155419.
  • 10Roux B.. Comp. Phys. Comm. [J], 1995, 91:275-285.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部