期刊文献+

短波近红外在体荧光分子成像技术最新进展 被引量:6

Advance of Short Wavelength Near Infrared In-vivo Fluorescence Molecular Imaging
下载PDF
导出
摘要 癌症的诊断迄今所依赖的主要是一些离体检测方法以及超声波、X射线透视、X射线CT、核磁共振成像和PET等影像学技术.癌症的确诊则以肿瘤组织或病变细胞的形态和其它宏观特征为依据,这往往是一个侵入性和耗时的过程,不适于癌症的早期诊断.这些影像学技术目前也大都难以发现分子水平上的问题.因此,迄今癌症的早期诊断仍然是医学界面临的一个空前挑战.光学成像方法,特别是荧光成像方法具有对人体无害、非侵入、高灵敏和可进行在体多目标成像的优点,随着荧光指示物的不断拓展和检测方法的不断创新,有望在分子和细胞水平上实现癌症的早期诊断.本文重点介绍了几项有较重要价值及工作在短波近红外区域的在体荧光成像技术的新进展. Up to now,the diagnosis of cancers depends mainly on in vitro detection procedures and such imaging techniques as ultrasonic imaging,X-ray photography,X-ray computed tomography,nuclear magnetic resonance imaging and positron emission tomography(PET),etc..The determination and confirmation of cancers are relying on the morphology and other macroscopic characteristics of tumor tissues or ill cells,and this is usually an invasive and time-consuming process.Such procedure is definitely not suitable for early diagnostics of cancers.Aforementioned imaging techniques are difficult to find the symptom of cancers at molecular lever.Thus,the early-stage diagnosis of cancers remains an unprecedented challenge that doctors are facing.Optical imaging technolgies,especially fluorescence molecular imaging(FMI),possess advantages of harmlessness,nonivasiveness,super sensitivity and possibility for in vivo multi-targeting imaging and are believed to have the possibility to realize the diagnosis of cancers at molecular and cell levels.In this review,several important advances of FMI techniques working in the short-wavelength near infrared region are introduced and critically reviewed.
作者 牟颖 金钦汉
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2008年第12期2627-2634,共8页 Chemical Journal of Chinese Universities
基金 国家科技部基金(批准号:2006BAK03A09,2007CB714503)资助
关键词 近红外 荧光 成像 量子点 Near infrared Fluorescence Imaging Quanta dot
  • 相关文献

参考文献1

二级参考文献41

  • 1Alivisatos A. P., Science, 1996, 271,933
  • 2Weller H., Angew. Chem. Int. Ed. Engl., 1993, 32, 41
  • 3Alivisatos A. P., J. Phys. Chem., 1996, 100, 13226
  • 4Klein D., Roth R., Lim A., et al., Nature, 1997, 389, 699
  • 5Weller H., Adv. Mater., 1993, 5, 88
  • 6Han K., Xiang Z., Wang Z., et al., Chem. Res. Chinese Universities, 2006, 21(1), 76
  • 7Bruchez M. P., Moronne M., Gin P., et al., Science, 1998, 281, 2013
  • 8Gaponik N., Radtchenko I. L., Sukhorukov G. B., et al., Adv. Mater., 2002, 14, 879
  • 9Mattoussi H., Mauro J. M., Goldman E. R., et al., J. Am. Chem.Soc.,2000,122,12142
  • 10Battersby B. J., Bryant D., Meutermans W., et al., J. Am. Chem. Soc., 2000, 122, 2138

共引文献20

同被引文献50

  • 1Liu, Fei, Liu, Xin, Zhang, Bin, Bai, Jing.Extraction of Target Fluorescence Signal from In Vivo Background Signal Using Image Subtraction Algorithm[J].International Journal of Automation and computing,2012,9(3):232-236. 被引量:4
  • 2狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 3Chermont Q. M. , Chaneac C. , Seguin J. , Pelle F. , Maitrejean S. , Jolivet J. P. , Gourier D. , Bessodes M. , Scherman D.. Proc. Natl. Acad. Sci. USA[J], 2007, 104(22): 9266--9271.
  • 4Gong H. , Kovar J. , Little G. ,Chen H. , Olive D. M.. Neoplasia[J] , 2010, 12(2) : 139--149.
  • 5Nesterova I. V. , Verdree V. T. , Pakhomov S. , Strickler K. L. , Allen M. W. , Hammer R. P. , Soper S. A.. Bioconjugate Chem. [J], 2007, 18(6) : 2159--2168.
  • 6Nesterova I. V. , Erdem S. S. , Pakhomov S. , Hammer R. P. , Soper S. A.. J. Am. Chem. Soe. [J], 2009, 131(7) : 2432--2433.
  • 7Ashwell G. , Harford J.. Annu. Rev. Bioehem. [J], 1982, 51(1) : 531--534.
  • 8Distefano G. , Fiume L. , Domenicali M. , Busi G. C. , Chieco P. , Kratz F. , Lanza M. , Mattioli A. , Pariali M. , Bernardi M.. Digestive & Liver Disease[J], 2006, 38(6) : 404---408.
  • 9Hanack M. , Ziegler T.. Tetrahedron Letters[J] , 2009, 50:873--875.
  • 10Blow N.. Nature Methods[J] , 2009, 6(6) : 465--469.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部