摘要
提出了使用广义到达时间间隔的贝叶斯网络业务分类感知算法和基于业务感知的光互联网波长调度机制。仿真结果表明,使用广义到达时间间隔的贝叶斯网络业务感知算法获得的平均感知准确率可高达98%,同时训练数据中业务类型所占比例与该类型业务的感知准确率有密切关系。基于业务感知的波长调度机制在获得更高波长资源利用率的同时,能够实现光网络资源与业务需求的更好适配。
A conception of universal inter-arrival time (UIAT), and a traffic identification algorithm based on UIAT by using Bayesian network was presented. A novel wavelength scheduling scheme with traffic identification was proposed and numerically simulated. Simulation results show, the average traffic identification accuracy of the method is higher than 98%, and the identification accuracies vary with the number of instances of that traffic in the training data. It is also shown that the traffic identification based wavelength scheduling scheme can match the wavelength utilization with application requirements better with higher wavelength efficiency.
出处
《通信学报》
EI
CSCD
北大核心
2008年第12期32-36,共5页
Journal on Communications
基金
国家重点基础研究发展计划("973"计划)基金资助项目(2007CB310705)
国家高技术研究发展计划("863"计划)基金资助项目(2006AA01Z238)
国家自然科学基金资助项目(60572021
60772024)
教育部"长江学者和创新团队发展计划"基金资助项目(IRT0609)~~
关键词
光互联网
业务感知
波长调度
贝叶斯网络
optical internet
traffic identification
wavelength scheduling
Bayesian network