期刊文献+

基于测地线活动轮廓模型的图像除噪和增强

Denoising and Enhancement Image Based on Geodesic Active Contour Model
下载PDF
导出
摘要 讨论曲线演化的活动模型去除图像噪声的性质。利用不同尺度小波变换系数的边缘映射指示图像的边缘。把不同尺度下的边缘映射经复合设置成曲线演化方程的边缘指示函数。为了防止边缘尖点被平滑,采用一种新的数值离散迭代格式求解曲线演化方程。这样使曲线演化方程在均匀区域能更好地平滑噪声,边缘点得到保护且不被模糊。通过对图像的仿真试验说明提出的方法在图像除噪方面有良好的效果。 The property of the active contour model for image denoising was studied. At each resolution level, the image edges are estimated by gradient magnitudes obtained from the wavelet transform coeffi- cients. New edge indictor function is constructed by combining gradient magnitudes obtained from the wavelet transform coefficients at different resolution levels. New discrete numerical scheme is used. The edge, salience and local detail can be preserved well in images. The image denoising numerical results demonstrate the good performance based on modifying geometric model.
出处 《江苏工业学院学报》 2008年第4期68-72,共5页 Journal of Jiangsu Polytechnic University
基金 江苏教育厅高校自然科学研究项目(06KJD520048) 江苏工业学院科研基金资助
关键词 图像除噪 曲线演化 小波变换 边缘 image denoising curve evolution wavelets transform edge
  • 相关文献

参考文献12

  • 1Perona P, Malik J. Scale-space and edge detection using anisotropie diffusion [J]. IEEE Trans on PAMI, 1990, 12 (7) : 629-639.
  • 2Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM J NumAnal, 1992, 29 (1): 182-193.
  • 3Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion: Ⅱ[J]. SIAM Journal on Numerical Analysis, 1992, 29 (:3): 845-866.
  • 4Martin Burger, Frank Hauβer, Christina Stocker, et al. A level set approach to anisotropic flows with curvature regularization [ J]. Journal of Computational Physics, 2007, 225 (1):183-205.
  • 5Sarti C Ortiz de Solorzano, Lockett S, Malladi R. A geometric model for 3D eonfoeal image analysis [J]. IEEE Trans on Biomedical Engineering, 2000, 47 (12): 1 600-1 609.
  • 6Malladi R, Sethian J A. A unified approach to noise removal, image enhancement and shape recovery [J]. IEEE Trans on Image Processing, 1996, 5 (11): 1554-1568.
  • 7Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17 (2): 158-175.
  • 8Osher S, Sethian J A. Fronts propagation with curvature dependent speed: Algorithm based on Hamilton-Jacobi formulation [J]. Journal of Computational Physics, 1988, 79 (1): 12-49.
  • 9Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22 (1): 61-79.
  • 10Mallat S G, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans Pattern Anal Machine Intell, 1992, 14 (7): 710-732.

二级参考文献9

  • 1郭小卫,田铮.基于小波域边缘方向特征的SAR图象噪声抑制方法[J].中国图象图形学报(A辑),2003,8(4):453-458. 被引量:11
  • 2Goodman J W. Some fundamental properties of speckle [J].Jour. of Optical Society of America, 1976,66(11):1105-1150.
  • 3Lee J S, Jurkevich I. Speckle filtering of synthetic aperture radar images: A review[J]. Remote Sensing Reviews, 1994,8(3):313-340.
  • 4Lee J S. Digital image smoothing and the sigma filter [J].Computer Vision, Graphics and Image Processing, 1983, 24:255-269.
  • 5Kuan DT, Sawchuk, Strand A A, Chavel T C, Adaptive noise smoothing filter for images with signal-dependent noise [J].IEEE Trans. on Pattern Analysis and Machine Intelligence,1985,7(2) :165-177.
  • 6Lopes A, Nezry E, Laur H. Structure detection and statistical,adaptive speckle filtering in sar images [J]. Int. J. Remote Sensing, 1993,14(9):1735-1758.
  • 7Donoho D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995,41(3):613-627.
  • 8Fukuda Seisuke, Hirosawa Haruto, Suppression of speckle in synthetic aperture radar[J]. International Journal of Remote Sensing, 1998,19(3) :507-518.
  • 9Arsenault H H, April G. Properties of speckle integrated with a finite aperture and logarithmically trans-formed[J]. Journal of the Optical Society of America, 1976,66:1160-1163.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部