期刊文献+

基于小波分解的日径流逐步回归预测模型 被引量:16

Stepwise regression model for daily runoff prediction based on wavelet decomposition
下载PDF
导出
摘要 本文以预测水文站的上游水文站的日径流序列为依据,利用小波分解和重构得到预测水文站及上游水文站的日径流序列在1-4尺度下的概貌分量,然后以各站的原始径流序列及其在不同尺度下的概貌分量为候选预报因子,建立了径流逐步回归多步预测模型。计算实例表明,由于引入了上游水文站的径流序列并提取了各站径流序列的不同尺度下的概貌分量,本文提出的基于小波分解的日径流逐步回归预测模型的预测精度高于小波网络模型和多元自回归模型,能对非凌汛期未来1~3d以及凌汛期1~7d的日均流量进行预测,可为制定水电站未来的发电计划提供科学的依据。 A stepwise regression model for runoff prediction based on wavelet decomposition is proposed The daily runoff time series of the hydrological stations in the upstream of the hydrological stations under consideration are introduced into the model. The general components of the daily runoff time series of both hydrological stations at timescale 1 -4 can be obtained by using the wavelet decomposition and reconstruction. Taking the original daily runoff time series and their general components as candidate independent variables, the stepwise regression models for daily runoff multi-step prediction can be established. A case study shows that the p model is better than the auto-regression model, and is able to predict the daily runoff in 1 - 3 days during non ice-jam period and 1 - 7 days during ice-jam period with acceptable accuracy.
出处 《水利学报》 EI CSCD 北大核心 2008年第12期1334-1339,共6页 Journal of Hydraulic Engineering
基金 国家自然科学基金资助项目(50679052)
关键词 日径流预测 小波分解 概貌分量 逐步回归模型 daily runoff prediction wavelet decomposition general components stepwise regression model
  • 相关文献

参考文献13

二级参考文献39

共引文献498

同被引文献227

引证文献16

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部