期刊文献+

动态电力系统求取最近鞍点分岔边界的新方法 被引量:2

Closest saddle-node bifurcation boundary in control parameter space
下载PDF
导出
摘要 定义系统当前运行点到鞍点分岔点的欧式距离为动态电力系统的电压稳定裕度(负荷裕度),该裕度衡量动态系统稳定运行的负荷增长承受能力。提出了寻求关键特征值的指标,通过该指标,可以给出发生鞍点分岔的初始负荷增长方向,保证系统在到达鞍点分岔点之前不会遭遇其他分岔点。也提出了参数空间下求取动态电力系统发生最近鞍点分岔边界的迭代算法,分析并判断了系统到达该分岔点对应的最危险负荷增长方式。采用IEEE3节点和IEEE57节点仿真系统进行方法验证,仿真结果显示该算法的有效性和良好的收敛性。 An effective iterative method to find the closest Saddle-node bifurcation point in dynamic power system is proposed, and the corresponding load increase pattern, which leads the system to the closest saddle-node bifurcation boundary, is obtained as well. An index for critical eigenvalue selection is also present, through which the initial load increase pattern is determined. The Euclidean distance between the current operating point to the closest saddle-node bifurcation boundary is regarded as the voltage stability margin (or load margin), which is aimed at assessing the system robustness to system dynamic voltage instabilities. Simulation result obtained both 3-bus and 57-bus test systems, the simulation results illustrate the validity of the proposed method with good convergence.:
出处 《电力系统保护与控制》 EI CSCD 北大核心 2008年第23期18-22,共5页 Power System Protection and Control
关键词 鞍点分岔 动态电力系统 参数空间 超平面 关键特征值 saddle-node bifurcation dynamic system parameter space hypersurface, critical eigenvalue
  • 相关文献

参考文献10

  • 1Canizares C A.Calculating Optimal System Parameters to Maximize the Distance to Saddle-Node Bifurcations[].IEEE Trans on Circuits and Systems-I:Fundamental Theory and Applications.1995
  • 2Guckerheimer J,Holmes P,Oscillations N.Dynamical Systems and Bifurcations of Vector Fields[]..1983
  • 3Zaborszky J,Venkatasubramanian V.Application of Taxonomy Theory,Part1:Computing the Hopf Bifurcation Related segment on the Feasibility Boundary[]..1995
  • 4http://www.ee.washington.edu/research/pstca/pf57/pg-tca57bus.htm .
  • 5Dobson I.An Iterative Method to Compute a Closest Saddle Node or Hopf Bifurcation Instability in Multidimensional Parameter Space[].IEEE International Symposium on Circuits and SystemsISCAS’ Proceedings.1992
  • 6Dobson I."Computing an Optimum Direction in Control Space to Avoid Saddle Node Bifurcation and Voltage Collapse in Electric Power Systems"[].IEEE Transactions on Automatic Control.1994
  • 7Dobson,I.Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems[].IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.1992
  • 8F. L. Alvarado,I. Dobson,and Y. Hu.Computation of closest bifurcation in power system[].IEEE Transactions on Power Systems.1994
  • 9VenkatasubramanianV,SchattlerH,ZaborszkyJ.Voltagedy namics:studyofageneratorwithvoltagecontrol,transmission ,andmatchedMWload[].IEEETransactionsonAutomaticControl.1992
  • 10Cannizares C A,,Alvarado F L.Point of collapse and con-tinuation methods for large AC/DC systems[].IEEE Transactions on Power Systems.1993

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部