期刊文献+

基于L-Z方法的宏观交通运输系统复杂性测度 被引量:10

Complexity measure for macroscopical transportation system using Lempel-Ziv algorithm
下载PDF
导出
摘要 为了测度宏观交通运输系统的复杂性,引入符号动力学中的L-Z方法,并针对趋势项导致的宏观数据非平稳性,改进了L-Z方法.从总量与分量、不同对象、不同时段等视角,以改进的L-Z方法分析30个交通运输时间序列的复杂度,结果表明:我国宏观交通运输系统的复杂度不高;一体化能够降低宏观交通运输系统的复杂度;旅客运输比货物运输的复杂度高;宏观交通运输系统的复杂度与时间序列的长度成反比.这说明,L-Z方法适用于宏观交通运输系统的复杂性测度,复杂性的测度结果可以作为宏观交通管理决策的重要依据. The Lempel-Ziv algorithm of symbolic dynamics was introduced to measure the complexity of macroscopieal transportation system. It was improved aimed at the nonstationarity of macroscopical transportation data resulted from the trend term, and was then applied to the analysis on complexities of 30 transportation time series from three aspects, i. e. , total quantity and partial quantity, passenger and freight, and different periods of transportation. Results show that, the complexity of macroscopical transportation system in China is low, the transportation integration can reduce the complexity of macroscopical transportation system, the complexity of passenger transportation is higher than that of freight transportation, and the complexity of macroscopical transportation system is in inverse proportion to the length of time series. Therefore, it can be concluded that the improved Lempel-Ziv algorithm is suitable for the complexity measure of macroscopieal transportation system, and the measure results can be used as an important basis for decision - making in the management of maeroscopical transportation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第12期2058-2061,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50478088) 河北省教育厅科学研究计划资助项目(2008203)
关键词 L—Z方法 复杂性测度 交通运输 宏观交通运输系统 Lempel-Ziv algorithm complexity measure transportation macroscopical transportation system
  • 相关文献

参考文献8

  • 1ADDISON P S, LOW D J. A novel nonlinear car-following model [J]. Chaos, 1998, 8(4) : 791 -799.
  • 2JOHANNS R D, ROOZEMOND D A. An object based traffic control strategy, a chaos theory approach with an object-oriented implementation [ J]. Advanced Technologies, 1993,6, 231 -242.
  • 3NAIR A S, LIU J C, RILETT L, et al. Non-linear analysis of traffic flow [ C]//IEEE. Proceedings of the 4^th Intelligent Transportation Systems. Oakland : IEEE, 2001, 681 - 685.
  • 4SAFONNOV L A, TOMER E, STRYGIN V V, et al. Delay-induced chaos with muhifracal attractor in a traffic flow model [ J ]. Europhysics Letters, 2002, 57 (2) : 151 - 157.
  • 5NAGATANI T. Dynamical behavior of N shuttle buses not passing each other: chaotic and periodic motions [J]. Physica A (Statistical mechancs and its applications) , 2003, 327 (3 -4) : 570 -582.
  • 6贺国光,王东山.仿真交通流混沌现象的传播特性研究[J].土木工程学报,2004,37(1):70-73. 被引量:8
  • 7LEMPEL A, ZIV J. On the complexity of finite sequences [ J ]. IEEE Trans on Information Theory, 1976, IT-22(1) : 75-93.
  • 8中国经济信息网[EB/OL].http://www.eei.gov.cn/index/Transform.asp?cedb=7&ThreeBlockCode=030701&Template=dbjjnj027&blockcode=DBjjnj-ys,2005-07-01.

二级参考文献5

  • 1Low d J and Addison P S. Chaos in a car-following model including a desired inter-vehicle separation [ A ]. Proceedings of the 28th ISATA Conference [C]. Stuttgart, Germany, 1995, 539- 546.
  • 2Low D J and Addison P S. Chaos in a car-following model with a desired headway time [ A ]. Proceeding of the 30th ISATA Conference [C], Florence, Italy, 1997, 175-182.
  • 3张智勇 荣建 任福田.跟驰车队中的混沌现象研究[J].土木工程学报交通工程分册,2001,12(1):58-59.
  • 4丹尼尔 鸠洛夫.交通流理论[M].北京:人民交通出版社,1983.143-176.
  • 5王东山,贺国光.交通混沌研究综述与展望[J].土木工程学报,2003,36(1):68-74. 被引量:56

共引文献7

同被引文献104

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部