期刊文献+

代价敏感支持向量机在入侵检测中的应用

The application of Intrusion detection using Cost-sensitive SVM
下载PDF
导出
摘要 入侵检测系统在最大化计算机安全性的同时,着手减小其代价也是关键点之一。标准的分类器设计一般基于精度,在入侵检测等实际应用问题中,不同的类别对应的错分代价也不同,在此类问题中直接使用标准分类方法就无法取得良好的分类和预测效果。代价敏感算法通过改变代价矩阵,可使高代价样本的错分率得到有效的控制,并尽量减少总体错分代价。本文对代价敏感支持向量机在入侵检测中的应用进行了研究,并用KDDCUP99标准数据集对文中算法进行了测试评估。 While maximizing the safety of computer by Intrusion detecting system (IDS),minimize the cost is also one of the key point. Standard classifiers normally base on minimizing the incorrectly classified error; however,in some applications like intrusion detection,different misclassification has different cost. Therefore,using traditional classification methods on these areas will not get the best classifying and predicting effect. Cost sensitive algorithm could adjust misclassification rate of high cost sample by changing the cost matrix,and try to minimize the general misclassification cost. This paper has a research on the application of Intrusion de-tecting using cs-svm,and KDDCUP99 dataset is used to test.
作者 龙瑛 蔡之华
出处 《微计算机信息》 北大核心 2008年第36期62-63,共2页 Control & Automation
基金 国防科工委(编号不公开)
关键词 代价敏感 支持向量机 入侵检测 cost sensitive support vector machine intrusion detection
  • 相关文献

参考文献6

  • 1W. Lee, M. Miller, and S. Stolfo et al. Toward cost-sensitive modeling for intrusion detection. Technical Report CUCS-002-00, Computer Science, Columbia University, 2000.
  • 2E. Amoroso. Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Traps, Trace Back, and Response. Intrusion.Net Books, 1999.
  • 3P Domingos. Metacost: A general method for making classifiers cost-sensitive. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining (KDD-99),August 1999. C. Elkan,
  • 4郑恩辉,李平,宋执环.基于支持向量机的代价敏感挖掘[J].信息与控制,2006,35(3):294-298. 被引量:5
  • 5KDD cup 99 Intrusion detection data set [ EB/OL ]. (1999 - 10 - 28) http://kdd.ics.uci.edu/databases/kddcup99/
  • 6王涛,宫会丽.支持向量机在入侵检测系统中的应用[J].微计算机信息,2006(12X):89-91. 被引量:5

二级参考文献12

  • 1贾志平,杨武,云晓春.一个分布式高效网络入侵检测系统[J].微计算机信息,2006(01X):33-35. 被引量:6
  • 2李琨,王前,张华忠.入侵检测报警信息管理系统设计与实现[J].微计算机信息,2006(01X):42-43. 被引量:6
  • 3周志华.普适机器学习[EB/OL].http://WWW.intsci.ac.cn/research/zhouzh04.ppt,2003
  • 4Han J, Kamber M. Data Mining: Concepts and Techniques[M]. San Francisco, CA: Morgan Kaufmann, 2001.
  • 5Fan W, Stolfo S, Zhang j, et al. AdaCost: misclassification cost-sensitive boosting [A]. Proceedings of the 16th International Conference on Machine Learning [ C ]. San Francisco, CA,USA: Morgan Kaufmann, 1999. 97- 105.
  • 6Zadrozny B, Langford J, Abe N. Cost-sensitive learning by costproportionate example weighting [ A ]. Proceedings of the Third IEEE International Conference on Data Mining [ C ]. Melbourne, Florida Balaji Padmanabhan: University of Pennsylvania, 2003. 435-442.
  • 7Giorgio F, Fabio R. Cost-Sensitive Learning in Support Vector Machines [ EB/OL]. http://www. diee. unica, it/informatica/en/publications/papers-prag/Rel-Conference-06.pdf. 2002.
  • 8Burges C. A tutorial on support vector machines from pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121-167.
  • 9Paola C, Elena C, Giorgio V. Support vector machines for candidate modules classification [ J]. Neurocomputing, 2005, 68(1-4) : 281-288.
  • 10Cover T M, Geometrical and statistical properties of systems and linear inequalities with applications in pattern recognition [J].IEEE Transactions on Electronic Computers, 1965, 14 (3) : 326-334.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部