期刊文献+

优化Gabor小波权重的EBGM算法 被引量:2

EBGM algorithm with optimized Gabor wavelet weight
下载PDF
导出
摘要 在EBGM算法中,计算人脸特征点的相似度时,认为每个Gabor小波系数对结果的影响是相同的,从而给予所有系数同等权重,但实验测试表明情况并非如此。充分挖掘了人脸的统计特性,通过对不同特征点在频域分布特征的提取,提出一种对Gabor小波系数进行分类并赋予其不同权重的优化方法。实验测试证明,该算法能有效地提高识别率。 In elastic bunch graph matching(EBGM)algorithm, all the Gabor wavelet parameters have the same weight when measuring the similarity between two jets of the same landmark. In this paper, by making use of the statistics of human face and extracting frequency distribution of different landmarks, a new similarity measuring method is presented, based on the optimized weight of Gabor wavelet parameters. The experiments show that this method can effectively improve the recognition rate.
出处 《信息技术》 2009年第1期59-62,共4页 Information Technology
关键词 人脸识别 弹性图匹配 GABOR小波 权重优化 face recognition EBGM Gabor wavelet optimized weight
  • 相关文献

参考文献5

  • 1Ruiz-del-Solar J, Navarrete P. Eigenspace-based face recognition: a comparative study of different approaches [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2005,35(3):315- 325.
  • 2张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:258
  • 3Wiskott L, Fellous J M, Kruger N, et al. Face Recognition by Elastic Bunch Graph Matching[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997,19(7) :775 - 779.
  • 4Bolme D S. Elastic Bunch Graph Matching[D]. Thesis for the Degree of Master of Science in Computer Science, Colorado State University.Colorado, USA. 2003.
  • 5Mohamad Hcseyn Sigari. Best Wavelength Selection for Gabor Wavelet Machine Vision [ C ]. ICMV 2007. International Conference on Volume,Issue,28 - 29 Dee.2007:35 - 39.

二级参考文献1

共引文献257

同被引文献22

  • 1叶敬福,詹永照.基于Gabor小波变换的人脸表情特征提取[J].计算机工程,2005,31(15):172-174. 被引量:25
  • 2陈志稳,韩永强,承宁.低渗透储层大型压裂改造技术新突破[J].油气井测试,2006,15(1):45-45. 被引量:4
  • 3潘哲军,卢克.康奈尔.煤层气产量预测和矿区优化的储层模拟[J].中国煤层气,2006,3(3):27-31. 被引量:8
  • 4PARDAS M, BONAFONTE A. Facial animation parameters extraction and expression recognition using hidden markov models [J]. Signal Processing: Image Communication, 2002, 17(9) : 675-688.
  • 5YANG J, ZHANG D, FRANGI A F, et al. Two dimensional PCA: a new approach to appearance- based face representation and recognition [J]. IEEE Trans PAMI 2004, 26(1): 131-137.
  • 6SUGENO M. Fuzzy measures and fuzzy integrals: a survey [J]. Fuzzy Automata and Decision Processes, 1977, 78(33): 89-102.
  • 7KELLER J M, GADER P, TAHANI H, et al. Advances in fuzzy integration for pattern recognition[J]. Fuzzy Sets and Systems, 1994, 65 ( 2/3 ) 273-283.
  • 8FASEL B, LUETTIN J. Automatic facial expression analysis: a survey [J].Pattern Recognition, 2003, 36 (1): 259-275.
  • 9GABOR D. Theory of communication [J]. Journal of the Institute of Electrical Engineers, 1946, 93(26): 429 457.
  • 10PANTIC M, ROTHKRANZ L J M. Expert system for automatic analysis of facial expression [J]. Lecture Notes in Computer Science, 2007, 18(11): 881-905.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部