期刊文献+

小鼠精子细胞变态成形过程中manchette的免疫荧光染色分析 被引量:5

IMMUNOFLUORESCENCE ANALYSIS OF MANCHETTE DURING MOUSE SPERMIOGENESIS
下载PDF
导出
摘要 目的通过观察manchette结构在小鼠精子细胞中的定位和形态变化,探讨其在小鼠精子细胞变态成形过程中的作用和意义。方法利用免疫荧光FITC/DAPI共染技术显示manchette结构在小鼠精子细胞变态成形各阶段的细胞内定位,观察精子细胞成熟过程中manchette结构的形态学改变。结果manchette结构紧密附着在精子细胞核表面;该结构在圆形精子细胞核变形和延伸的起始阶段形成,并随着精子细胞核的浓缩和变长逐渐向精子细胞尾部移位,直至精子变态成形后消失;在精子细胞变态成形过程中,manchette随着精子细胞核形态的改变逐渐从"帽状"结构变形为"微管样"结构。结论Manchette结构的形成和消失与精子细胞核的浓缩及延伸同步,其形态变化和位置改变与精子细胞核的形态学变化相吻合,在小鼠精子细胞变态成形过程中具有重要意义。 Objective To investigate spermiogenesis. Methods the localization and the morphological changes of manchette during mouse staining with FITC and costaining with DAPI were used to demonstrate the cellular localization of the manchette at different stages during mouse spermiogenesis. The structural changes of the manchette were observed during the maturing of the spermatid. Results staining showed that manchette existed exactly around the nuclei of the spermatids. Manchette began to form, when the shape of the nucleus changed from spherical to slightly elongated. While the nucleus of the spermatids condensed and elongated at later stages, manchette moved gradually to the caudal position of the spermatids. At last, the manchette diminished as the spermatids became mature. During mouse spermiogenesis, manchette underwent a transition from a cap-like to a tubular configuration. CondusionThe formation and diminishment of the manchette is in step with the condensation and elongation of the nucleus of the spermatid. Both the structural and positional changes of the manchette coincide with the changes of the nucleus. These results imply that manchette might play an important role in mouse spermlogenesis
出处 《解剖学报》 CAS CSCD 北大核心 2008年第6期881-885,共5页 Acta Anatomica Sinica
基金 山西省教育厅高校科技开发项目(20051225)资助
关键词 MANCHETTE 精子细胞 变态成形 免疫荧光 小鼠 Manchette Spermatid Spermiogenesis Immunofluorescence Mouse
  • 相关文献

参考文献15

  • 1Burgos MH, Fawcett DW. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica) [J]. J Biophys Biochem Cytol, 1955, 1 (4):287-300.
  • 2Lewis SA, Cowan NJ. Complex regulation and functional versatility of mammalian alpha- and beta-tubulin isotypes during the differentiation of testis and muscle cells [J]. J Cell Biol, 1988, 106 (6): 2023-2033.
  • 3Russell LD, Russell JA, MacGregor GR, et al. Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents [J]. Am J Anat, 1991, 192(2):97-120.
  • 4Kierszenbaum AL. Spermatid manchette: plugging proteins to zero into the sperm tail [J]. Mol Reprod Dev, 2001, 59 (4) : 347-349.
  • 5Kierszenbaum AL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head [ J ]. Arch Histol Cytol, 2004, 67 (4) : 271-284.
  • 6Kierszenbaum AL. Sperm axoneme: a tale of tubulin posttraanslation diversity [J]. Mol Reprod Dev, 2002, 62 (1): 1-3.
  • 7Tachibana M, Terada Y, et al. Dynamic changes in the cytoskeleton during human spermiogenesis [ J]. Fertil Steril, 2005, 84 (Suppl 2), 1241-1248.
  • 8Kato A, Nagata Y, Todokoroa K. δ-Tubulin is a component of intercellular bridges and both the early and mature perinuclear rings during spermatogenesis[J] .Dev Biol, 2004, 269 ( 1 ) : 196-205.
  • 9Cherry LM, Hsu TC. Antitubulin immunofluorescence studies of spermatogenesis in the mouse[J]. Chromosoma (Berl), 1984, 90 (4) : 265-274.
  • 10Mochida K, Tres LL, Kierszenbaum AL. Isolation of the rat spermatid manchette and its perinuclear ring [J]. Dev Biol, 1998, 200 (1) : 46- 56.

同被引文献39

  • 1竺俊全,杨万喜,尤仲杰,王武,焦海峰.嘉庚蛸精子发生的超微结构[J].水产学报,2006,30(2):161-169. 被引量:14
  • 2苏爱,刘金成,王振华,王培林.小鼠睾丸生殖细胞减数分裂标本制作方法的改进[J].青岛大学医学院学报,2006,42(4):366-366. 被引量:6
  • 3Martinez-Soler F, Kurtz K, Chiva M. Sperm nucleomor- phogenesis in the cephalopod Sepia officinalis. Tissue Cell 2007; 39(2): 99-108.
  • 4Gimenez-Bonafe P, Ribes E, Zamora MJ, Kasinsky HE, Chiva M. Evolution of octopod sperm Ⅰ: Comparison of nuclear morphogenesis in Eledone and Octopus. Mol Reprod Dev 2002; 62 (3): 357-62.
  • 5Ribes E, Gimenez-Bonafe P, Zamora MJ, Gonzalez A, Kasinsky H, Chiva M. Evolution of octopod sperm Ⅱ: Comparison of acrosomal morphogenesis in Eledone and Octopus. Mol Reprod Dev 2002; 62(3): 363-7.
  • 6Yang WX, Sperry AO. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 2003; 69(5): 1719-29.
  • 7Yang WX, Holly J, Sperry AO. The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 2006; 74(4): 684-90.
  • 8Zhu JQ, Yang WX, You Z J, Jiao HF. The ultrastructure of the spermatozoon of Octopus Tankahkeei. J Shellfish Res 2005; 24 (4): 1203-7.
  • 9Li Z, Zhu JQ, Yang WX. Acrosome reaction in Octopus tankahkeei induced by calcium ionophore A23187 and a possible role of the acrosomal screw. Micron 2010; 41: 39-46.
  • 10Tachibana M, Terada Y, Murakawa H, Murakami T, Yaegashi N, Okamura K. Dynamic changes in the cytoskeleton during human spermiogenesis. Fertil Steril 2005; 84 suppl 2: 1241-8.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部