期刊文献+

Goldview标记的DNA荧光毛细生物传感器的研究 被引量:4

Research on DNA Fluorescence Capillary Biosensor Marked by Goldview
下载PDF
导出
摘要 对Goldview(GV)作为荧光标记物的DNA荧光毛细生物传感器进行了研究。以荧光毛细分析法(fluorescence capillary analysis,FCA)为基础,在毛细管内壁通过Poly-l-lysine将20-mer-ssDNA探针固定,制成DNA荧光毛细生物传感器(DNA fluorescence capillary biosensor,DNA-FCB),DNA-FCB与互补靶DNA杂交,通过GV染色后,检测杂交产物的荧光强度,实现对靶DNA的定性和定量分析。样品用量12μL,靶DNA的浓度在0.4-4μmol·L^-1(2.4-24 mg·L^-1)范围内和荧光强度有良好的线性关系(y=65.911x+3.994 4,r=0.998 9);RSD〈3.5%,检出限0.39μmol·L^-1(2.2 mg·L^-1),能达到定量检测靶DNA的目的。用DNA-FCB测定靶DNA操作简便,试样、试剂用量少,测定成本极低,能大大减少环境污染。 Goldview marked DNA fluorescence capillary biosensor was studied in the present paper.Based on fluorescence capillary analysis (FCA),the DNA biosensor uses capillary as immobilization carrier and detection carrier of DNA probe.Probes(20-mer-ssDNA) were immobilized on the inner wall of capillary by poly-l-lysine,and DNA fluorescence capillary biosensor(DNA-FCB) was made.After being hybridized with complementary target DNA and dyed by Goldview,the target DNA was qualified or quantified by detecting the fluorescence density of the Goldview using F-4500 spectrofluorometer.The sample volume was 12 μL.The concentration of the target DNA showed good linearity with the fluorescence intensity in the range of 0.4-4 μmol·L^-1(2.4-24 mg·^L-1)(y=65.911x+3.994 4,r=0.998 9).The RSD was lower than 3.5%.The concentration detection limit of the target DNA was 0.39 μmol·L^-1(2.2 mg·L^-1).The DNA-FCB can be used to qualify or quantify the target DNA.It's advantages are simplicity of manipulation,thimbleful of sample and reagent volumes,repeated use of capillary,and the lowest test cost.By using DNA-FCB to qualify the target DNA,we can consumedly decrease the pollution of the environment.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第1期165-168,共4页 Spectroscopy and Spectral Analysis
基金 教育部留学回国人员科研启动基金项目(2300448) 四川大学“214”振兴计划科研启动基金(0082204127092)资助
关键词 DNA 荧光毛细生物传感器 Goldview DNA Fluorescence capillary biosensor Goldview
  • 相关文献

参考文献19

  • 1MA Li-ren,JIANG Zhong-hua(马立人,蒋中华).Biochip 2(生物芯片,第2版).Beijing:Chemical Industry Press(北京:化学工业出版社),2002.3.
  • 2Cheung V G, Morley M, Aguilar F, et al. Nature Genetics, 1999, 21: S15.
  • 3NataliaCTansil XIEHong XIEFang etal(谢红 谢方).Analytical Chemistry,2005,77(1):126-126.
  • 4Wang J, Palecek E, Nielsen P E, et al. J. Am. Chem. Soc., 1996, 118: 7667.
  • 5Tombelli S, Sacco C, Turner A P F, et al. Anal. Chem. Acta, 2000, 418(1): 1.
  • 6Piunno P A E, KruU U J, Hudson R H E, et al. Anal. Chem. Acta, 1994, 288(3): 205.
  • 7姜广奋,陈润生,阎宏,欧阳颀.用于基因探测的光纤DNA传感器及其阵列的一种新的制备方法[J].中国科学(C辑),2000,30(5):461-466. 被引量:6
  • 8翟俊辉,黄惠杰,杨瑞馥,任冰强,赵永凯.光纤生物传感器用于核酸的特异性检测[J].分析化学,2003,31(1):34-37. 被引量:19
  • 9杜江燕,黄晓华,徐飞,冯玉英,邢巍,陆天虹.硫堇与DNA分子作用机理的光谱研究[J].光谱学与光谱分析,2005,25(9):1435-1438. 被引量:27
  • 10LI Yong-sheng,GAO Xiu-feng(李永生,高秀峰).Chinese Patent(中国专利),Application No.(申请号)200510021542.8.

二级参考文献81

共引文献108

同被引文献24

  • 1刘春春,杭海英.生物大分子相互作用检测技术新进展——三色荧光级联荧光共振能量转移技术[J].生物化学与生物物理进展,2006,33(3):292-296. 被引量:6
  • 2刘玉颖,王鹏业,窦硕星.应用分子梳技术对DNA单分子的研究[J].自然科学进展,2007,17(4):421-427. 被引量:3
  • 3Stryer L, Haugland R. Proc. Natl. Acad. Sci. USA, 1967, 58: 719.
  • 4Jares-Erijman Elizabeth A, Jovin Thomas M. Nature Biotechnology, 2003, 21(11): 1387.
  • 5Giepmans Ben N G. Adams Stephen R, Ellisman Mark H et al. Science, 2006, 312:217.
  • 6Nienhaus Gerd Ulrich. Macromolecular Bioscience, 2006, 6 (11) : 907.
  • 7Clapp Aaron R, Medintz Igor L, Mattoussi Hedi. Chem. Phys. Chem., 2006, 7(1): 47.
  • 8Piston David W, Kremers Gert-Jan. Trends in Biochemical Sciences, 2007, 32(9): 407.
  • 9Deniz Aarok A, Mukhopadhyay Samrat, Lemke Edward A. Journal of the Royal Society Interface, 2008, 5(18): 15.
  • 10Zhang Chunyang, Yeh Hsin-Chin, Kuroki Marcos T, et al. Nature Materials, 2005, 4(11), 826.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部